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Abstract: We consider large N U(N)M thermal N = 2 quiver gauge theories on S1×S3.

We obtain a phase diagram of the theory with R-symmetry chemical potentials, separating

a low-temperature/high-chemical potential region from a high-temperature/low-chemical

potential region. In close analogy with the N = 4 SYM case, the free energy is of order

O(1) in the low-temperature region and of order O(N2M) in the high-temperature phase.

We conclude that the N = 2 theory undergoes a first order Hagedorn phase transition at

the curve in the phase diagram separating these two regions. We observe that in the region

of zero temperature and critical chemical potential the Hilbert space of gauge invariant

operators truncates to smaller subsectors. We compute a 1-loop effective potential with

non-zero VEV’s for the scalar fields in a sector where the VEV’s are homogeneous and

mutually commuting. At low temperatures the eigenvalues of these VEV’s are distributed

uniformly over an S5/ZM which we interpret as the emergence of the S5/ZM factor of

the holographically dual geometry AdS5 × S5/ZM . Above the Hagedorn transition the

eigenvalue distribution of the Polyakov loop opens a gap, resulting in the collapse of the

joint eigenvalue distribution from S5/ZM × S1 into S6/ZM .
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1. Introduction

The phase structure of large N U(N) gauge theories at finite temperature is in itself a very

rich and interesting subject that may provide qualitative insight into the phase structure of

QCD. Even more so, the AdS/CFT correspondence [1 – 3] has provided a general framework

for translating results obtained in weakly coupled thermal gauge theory into results about

the finite temperature behavior of the physics of black holes and stringy geometry at strong

coupling. One such connection was suggested by Witten [4] who argued that the Hawking-

Page phase transition [5] between thermal AdS5 and the large AdS5 Schwarzschild black

hole should have a holographic dual description as a confinement/deconfinement transition

in the dual thermal field theory defined on the conformal boundary S1×S3 of thermal AdS5.

A general framework for studying large N U(N) gauge theories on S3 at finite tem-

perature was given in [6]. In particular, this considered N = 4 U(N) SYM theory which

was also independently studied in [7]. Furthermore, for the N = 4 case the analysis was

extended in [8, 9] to include chemical potentials conjugate to the R-charges. In this way

a phase diagram of the theory as a function of both temperature and chemical potentials

was obtained. As one application of the phase diagram, in [9] the observation was made

that in regions of small temperature and critical chemical potential N = 4 SYM theory

reduces to quantum mechanical subsectors, including the XXX1/2 Heisenberg spin chain.1

Again for N = 4 SYM theory, the framework of [6, 7] was generalized in a different

direction in [11] by allowing non-zero VEV’s for the scalar fields. There a one-loop effective

potential for the theory at finite temperature on S3 at weak ’t Hooft coupling was computed

under the assumption that the VEV’s of the scalar fields are constant and diagonal matri-

ces.2 The potential was used there to study the manifestation of the Gregory-Laflamme

instability3 of the small AdS5 black hole from the weakly coupled gauge theory point of

view. The solutions to the equations of motion obtained from the effective potential of [11]

were given in [13] in terms of a joint eigenvalue distribution of the Polyakov loop and the

scalar VEV’s. Within the sector of constant and commuting scalar VEV’s it was found that

the topology of the eigenvalue distribution of these VEV’s undergoes a phase transition

S1×S5 → S6 at the Hagedorn temperature. The authors interpreted the S5 eigenvalue dis-

tribution of the scalar VEV’s as the emergence of the S5 factor of the holographically dual

thermal AdS5 × S5 geometry. It should be noted that, while the truncation to commuting

matrices is consistent, this sector will not describe the absolute minima of the action [14].

For this reason the observed phase transitions in the commuting saddles studied in ref. [13]

are not transitions in the full gauge theory.

The discovery that the eigenvalues of scalar VEV’s reconstruct the dual spacetime

geometry was originally made by Berenstein et al. in [15 – 18] by setting up matrix models

for the various sectors of BPS operators in the chiral ring. In particular the model for 1/8

BPS operators was developed in [17] where the dynamics was shown to reduce to that of

1Recently other decoupling limits have been found in near-critical regions by extending this analysis to

include the chemical potentials conjugate to the angular momenta on S3 [10].
2This potential was computed earlier in [8] for the special case of zero Polyakov loop eigenvalues.
3See [12] for a recent review of the Gregory-Laflamme instability.
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the eigenvalues of three commuting Hermitian matrices Z,X, Y plus two fermionic matri-

ces4 Wα. The quantum mechanical Hamiltonian for the eigenvalues involves an attractive

harmonic oscillator part and a repulsive Vandermonde type part. These forces are balanced

when the eigenvalues are localized to a hypersurface in C
3 which is taken to be an S5 due

to the SO(6) invariance of the quantum Hamiltonian. This S5 was identified with the S5

factor of the holographically dual geometry AdS5 × S5.

The purpose of this paper is to investigate the phase structure of N = 2 U(N)M quiver

gauge theories at finite temperature.5 Defined at zero temperature and on a flat spacetime,

these gauge theories are N = 2 supersymmetric and conformally invariant [24, 25]. We

carry out the investigation of the phase structure in two directions. First, we consider

the case of non-zero R-symmetry chemical potentials. One interesting question here is

whether the high-temperature phase admits several solutions. A further point of interest

is to examine whether one can uncover information about closed subsectors of the as yet

not completely settled underlying spin chain of N = 2 quiver gauge theory by studying the

near-critical chemical potential and low temperature regions of the (T, µ) phase diagram

of the theory as done for N = 4 SYM theory [9, 26].

Another question of interest is to what extent the S5 eigenvalue distribution of the

N = 4 SYM scalar VEV’s found in [17] and [13] can be interpreted as the emergence of

the S5 factor of the dual string theory geometry AdS5 × S5. To examine this question, we

make use of the fact that N = 2 quiver gauge theory can be realized as a ZM projection

of N = 4 SYM theory. The holographically dual spacetime of the N = 2 theory is thus

AdS5×S5/ZM where ZM only acts on the S5 factor. If the above interpretation of emergent

spacetime is correct, we should then expect to find an S5/ZM eigenvalue distribution for

the VEV’s of the scalar fields of N = 2 quiver gauge theory. This has been studied via

counting of BPS operators in [27 – 29]. Our approach to the problem is complementary in

that it is valid for weak ’t Hooft coupling, and it is valid for all temperatures in the range

0 ≤ TR≪ λ−1/2 unlike [27 – 29] which is only valid for T = 0. In parallel with ref. [13], we

restrict to the sector of constant and commuting scalar VEV’s. Whereas this enables us to

study phase transitions in the eigenvalue distributions, revealing interesting dynamics, it

does not necessarily reflect the full phase structure. However, we find it enlightening to see

how the geometry of the dual AdS spacetime is mirrored in the structure of the quantum

effective action computed in this sector.

The outline and summary of the results in this paper are as follows. In section 2 we

give an introduction to N = 2 quiver gauge theory on S1 × S3 with chemical potentials

conjugate to the R-charges. In section 3 we evaluate the quantum effective action of N = 2

quiver gauge theory with non-zero R-symmetry chemical potentials and zero scalar VEV’s

in the gYM → 0 limit and express it in terms of single-particle partition functions. We use

the effective action to construct a matrix model for N = 2 quiver gauge theory on S1×S3.

The model turns out to be an M -matrix model with adjoint and bifundamental potentials.

In section 4 we study the saddle points of the matrix model as functions of tempera-

4However, throughout the analysis of the dynamics in [17], the fermionic matrices Wα are disregarded.
5See also refs. [19 – 23] for related work on other supersymmetric gauge theories.
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ture and chemical potential and thereby examine the phase structure of the model. In the

low-temperature phase we find a saddle point corresponding to a uniform distribution of

the eigenvalues of the Polyakov loop.6 In this phase the free energy is O(1) with respect

to N . This behavior of the free energy suggests that the model in this phase describes a

non-interacting gas of color singlet states, and the phase is therefore labelled “confining”.

This saddle point is observed to become unstable when the temperature is raised above

a certain threshold temperature (which depends on the chemical potential). The model

then enters a new phase in which the free energy scales as N2M as N → ∞. This phase

is thus interpreted as describing a non-interacting plasma of color non-singlet states and

is labelled “deconfined”. The “deconfinement” transition is of first order and is identified

with a Hagedorn phase transition. The condition of stability of the low-temperature saddle

point is translated into a phase diagram of the gauge theory as a function of both tem-

perature and chemical potentials. We subsequently study the phase diagram in regions of

small temperature and critical chemical potential. We observe that the Hilbert space of

gauge invariant operators truncates to the SU(2) subsector when the chemical potential

corresponding to the SU(2)R factor of the R-symmetry group SU(2)R × U(1)R is turned

on, whereas when both chemical potentials are turned on and set equal, it truncates to a

larger subsector that corresponds to an orbifolded version of the SU(2|3) sector found in

N = 4 SYM theory.

In section 5 we develop a matrix model for N = 2 quiver gauge theory on S1 × S3

with non-zero VEV’s for the scalar fields and zero R-symmetry chemical potentials. We

carry out this computation in the special case where the background fields are assumed

to be “commuting” in a sense that conforms to the quiver structure. Furthermore the

background fields will be taken to be static and spatially homogeneous in order to preserve

the SO(4) isometry of the spatial S3 manifold. The method employed for computing the

effective potential will be the standard background field formalism. That is, we expand the

quantum fields about classical background fields and path integrate over the fluctuations,

discarding terms of cubic or higher order in the fluctuations. The resulting fluctuation

operators turn out to have a particular tridiagonal structure in their quiver indices. By

exploiting the vacuum structure of the theory we find that the determinants factorize,

leading to an expression for the quantum effective action of N = 2 U(N)M quiver gauge

theory that explicitly displays the ZM structure of the theory. Finally we generalize our

results to a specific class of field theories that can be obtained as ZM projections of N = 4

SYM theory, of which N = 2 quiver gauge theory is a special case.

In section 6 we find the minima of the matrix model of section 5 in the large N limit in

a coarse grained approximation. We consider the joint eigenvalue distribution of the scalar

VEV’s and the Polyakov loop and find that the topology of the eigenvalue distribution is

tied to the Hagedorn phase transition. Below the Hagedorn temperature the eigenvalues

of the scalar VEV’s are distributed uniformly over an S5/ZM and the eigenvalues of the

Polyakov loop are distributed uniformly over an S1. Thus, the joint eigenvalue distribution

6We are using a somewhat sloppy terminology here: by ‘Polyakov loop’ we really mean the holonomy

matrix of a closed curve winding about the thermal circle and not just its trace. Throughout this paper we

will use the word to describe both and leave the precise meaning to be determined from the context.
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is an S5/ZM fibered trivially over S1. We interpret this S5/ZM as the emergence of the

S5/ZM factor of the holographically dual AdS5 × S5/ZM geometry. Above the Hagedorn

temperature the eigenvalue distribution of the Polyakov loop becomes gapped and is thus

an interval. The scalar VEV’s are now distributed uniformly over an S5/ZM fibered over

this interval, with the radius of the S5/ZM at any point in the interval proportional to

the density of Polyakov loop eigenvalues at that point (for fixed TR). The S5/ZM thus

shrinks to zero radius at the endpoints of the interval: the topology of the joint eigenvalue

distribution is an S6/ZM where the ZM is understood to act on the S5 transverse to an S1

diameter. Finally we generalize our results to the ZM orbifold field theories discussed at

the end of section 5. In particular we find that the geometry of the dual AdS spacetime is

mirrored in the structure of the quantum effective action in a precise way within this class

of orbifold field theories.

In section 7 we discuss the results we have obtained in this paper and suggest directions

for future study. In appendix A further details about N = 2 U(N)M quiver gauge theory

are given, some of which the authors of this paper have not found elsewhere in the literature.

In particular, we write the full Lagrangian density in terms of SU(2)R ×U(1)R invariants.

In appendix B we give further technical details of the computation of the quantum effective

action obtained in section 5.

2. N = 2 quiver gauge theory with R-symmetry chemical potentials

In this section we review N = 2 U(N)M quiver gauge theories on S1×S3 with R-symmetry

chemical potentials. An introductory review of N = 2 quiver gauge theories on S1 × S3

is given in section 2.1. Details, some of which the authors have not found elsewhere in

the literature, are deferred to appendix A. In section 2.2 we then write up the complete

Lagrangian density including R-symmetry chemical potentials.

2.1 Review of N = 2 quiver gauge theory

N = 2 quiver gauge theory with gauge group U(N)M arises as the world-volume theory

of open strings ending on a stack of N D3-branes placed on the orbifold C
3/ZM . The

gauge theory is thus superconformal [25] with 16 supercharges. It can be obtained as a

ZM projection of N = 4 U(NM) SYM theory as explained in detail in appendix A. The

resulting gauge group is U(N)M where all the U(N) factors of the gauge group have the

same gauge coupling constant gYM associated with them. Letting i = 1, . . . ,M and iden-

tifying i ≃ i + M , the field content can be summarized as follows. There are M vector

multiplets7 (Aµi,Φi, ψΦ,i, ψi) where Aµi is the gauge field, ψi is the gaugino, Φi is a complex

scalar field, and ψΦ,i is the superpartner of Φi. We take ψi and ψΦ,i to be 2-component

Weyl spinors. Furthermore there are M hypermultiplets (Ai,(i+1), B(i+1),i, χA,i, χB,i) where

Ai,(i+1) and B(i+1),i are complex scalar fields and χA,i and χB,i are their respective super-

partners which we will take as 2-component Weyl spinors. The fields in the i’th vector

multiplet all transform in the adjoint representation of the i’th U(N) factor of the gauge

7We will use an N = 1 notation throughout since this proves convenient.
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B
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B( -1),( -2)M M

FM -1

Figure 1: Quiver diagram summarizing the field content of N = 2 U(N)M quiver gauge theory.

Each of the black dots (called nodes) represents a U(N) gauge group factor. The nodes are labelled

by i = 1, . . . ,M with the identification i ≃ i+M . Arrows go from fundamental to antifundamental

representations of the corresponding gauge group factors. The scalar fields Ai,(i+1), B(i+1),i and Φi

are shown in the figure, whereas the gauge fields and all the superpartners have been left implicit.

group. The fields in the i’th hypermultiplet transform in a bifundamental representation

of the i’th and (i + 1)’th factors. More specifically, letting Ni denote the fundamental

representation of the i’th U(N) factor and Ni the corresponding antifundamental repre-

sentation, Ai,(i+1) and its superpartner χA,i transform in the Ni ⊗ Ni+1 representation,

whereas B(i+1),i and its superpartner χB,i transform in the Ni ⊗ Ni+1 representation.

The field content is conveniently summarized in the quiver diagram in figure 1. The

diagram consists of M nodes, labelled by i = 1, . . . ,M with the identification i ≃ i +M .

The i’th node represents the i’th U(N) gauge group factor. Fields belonging to the i’th

vector multiplet are drawn as arrows that start and end on the i’th node. For the i’th

hypermultiplet, the fields transforming in the Ni⊗Ni+1 representation are drawn as arrows

that start at the i’th node and end at the (i + 1)’th node; the fields transforming in the

Ni ⊗ Ni+1 are depicted as arrows going from the (i+ 1)’th to the i’th node.

The holographic dual of N = 2 quiver gauge theory was found in [25] to be Type IIB

string theory on AdS5 × S5/ZM . The quotient S5/ZM is obtained by embedding S5 in

C
3 where the action of ZM is as defined in (A.1). The AdS5 space has a radius given by

R2
AdS =

√
4πgs(α′)2NM where gs is the Type IIB string coupling. There are also NM

units of 5-form RR-flux through the AdS5. Due to the orbifold action the volume of the

quotient S5/ZM equals the volume of the covering space S5 divided by a factor M where

the S5 has the same radius as AdS5. Similarly, there are N units of 5-form RR-flux through

the S5/ZM factor which originate from NM units of flux in the covering space. Finally,

– 6 –
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we note that the Yang-Mills coupling for each U(N) gauge group factor gYM is related to

the Type IIB coupling by g2
YM = 4πgsM . This means that the ’t Hooft coupling relevant

for each factor is λ = g2
YMN = 4πgsNM . This is the same as the ’t Hooft coupling on the

original NM D3-branes before orbifolding, for which the Yang-Mills coupling was equal to

4πgs. In the following we will often denote the Yang-Mills coupling simply by g.

The action of N = 2 U(N)M quiver gauge theory defined on S1×S3 is given as follows.

To fix our conventions, we set Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] and Dµ = ∂µ + ig[Aµ, · ].
We will denote the circumference of the thermal circle S1 with β and the radius of the

spatial S3 with R. The Euclidean action of N = 2 quiver gauge theory on S1 × S3 is then

S =

∫

S1×S3

d4x
√

|g|
(
Lgauge + Lscalar + Lferm

)
(2.1)

where the gauge boson, scalar field and spinor field Lagrangian densities are given by,

respectively8

Lgauge =
1

4
TrFµνFµν (2.2)

Lscalar = Tr
[(
DµADµA+DµBDµB +DµΦDµΦ

)

+R−2
(
AA+BB + ΦΦ

)
+

1

2
g2
(
[A,A] + [B,B] + [Φ,Φ]

)2

− 2g2
(∣∣[A,B]

∣∣2 +
∣∣[A,Φ]

∣∣2 +
∣∣[B,Φ]

∣∣2
)]

(2.3)

Lferm = iTr
(
χA τµ

↔
DµχA + χB τµ

↔
DµχB + ψ τµ

↔
Dµψ + ψΦ τµ

↔
DµψΦ

)

+
g√
2

Tr
(
χA

(
[A,ψΦ] − [B,ψ]

)
+ χB

(
[A,ψ] + [B,ψΦ]

)

−ψ
(
[A,χB] − [B,χA]

)
− ψΦ

(
[A,χA] + [B,χB]

)

+χA

(
[A,ψΦ] − [B,ψ]

)
+ χB

(
[A,ψ] + [B,ψΦ]

)

− ψ
(
[A,χB] − [B,χA]

)
− ψΦ

(
[A,χA] + [B,χB]

)

+ χA [Φ, χB] − χB [Φ, χA] + ψ [Φ, ψΦ] − ψΦ [Φ, ψ]

+ χA [Φ, χB] − χB [Φ, χA] + ψ [Φ, ψΦ] − ψΦ [Φ, ψ]
)
. (2.4)

The traces are taken over the NM ×NM matrices. The spinor fields χA, χB, ψΦ, ψ are un-

dotted 2-component Weyl spinors. We define τµ = (1, iσ). The operator
↔
Dµ is defined by

ψ1

↔
Dµψ2 ≡ 1

2

(
ψ1Dµψ2 − (Dµψ1)ψ2

)
. It is implied that the fields A,B,Φ, Aµ etc. take the

orbifold projection invariant forms given in eqs. (A.15)–(A.16) and (A.31)–(A.32). Note

that the scalar fields are conformally coupled to the curvature of the spatial manifold S3

through the term R−2 Tr
(
AA+BB+ΦΦ

)
in (2.3). This effectively induces a mass for the

scalar fields.

8Note that for all fields, including the Weyl spinors χA, χB , ψΦ, ψ, the bars denote the Hermitian con-

jugate, not the complex or Weyl conjugate. E.g., (χA)αβ = (χA)∗βα where α, β are gauge group indices and

the ∗ denotes complex conjugation. Furthermore, in the third line of eq. (2.3), the notation means, e.g.,

|[A,B]|2 ≡ [A,B][A,B].
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The orbifolding breaks the R-symmetry group SU(4) of N = 4 SYM theory into

SU(2)R × U(1)R. As described in appendix A, Φ is associated with the z1 direction of C
3

which is inert under the action of the orbifold group ZM , while A and B are associated with

z2 and z3 respectively. The U(1)R factor corresponds to the transformation z1 → eiζz1 and

therefore acts on the Φ fields by multiplying phase rotations. The A and B fields have zero

charge under U(1)R. The SU(2)R symmetry acts on the A and B fields and their Hermitian

conjugates. In fact, (A,B) and (−B,A) form SU(2)R doublets. Furthermore (ψ,ψΦ) and

(−ψΦ, ψ) are SU(2)R doublets whereas χA and χB have zero charge under SU(2)R. The

gauge field is not charged under SU(2)R ×U(1)R. We summarize the R-charges in table 2.

2.2 Lagrangian density with R-symmetry chemical potentials

Given any non-Abelian symmetry groupG, one can introduce chemical potentials conjugate

to the generators of a maximal torus of G. In this section we will consider the case where

G is the R-symmetry group SU(2)R × U(1)R of N = 2 quiver gauge theory. The maximal

torus is U(1) × U(1). We will denote the Cartan generators of U(1)R and SU(2)R by Q1

and Q2, respectively, and the corresponding chemical potentials by µ1 and µ2. For the

U(1) factor of the maximal torus that corresponds to U(1)R the eigenvalues of the Cartan

generators can directly be read off from table 2. For the U(1) ⊂ SU(2)R we choose as a

basis for the Cartan subalgebra the diagonal generator σz so that the SU(2)R doublets will

have well-defined charges under U(1). (We choose σz rather than 1
2σz as the generator

Q2 because we require eiQ2θ to be invariant under θ → θ + 2π. Setting Q2 ≡ σz we have

eiQ2θ = diag(eiθ, e−iθ) which is clearly invariant.) Therefore the charges under the maximal

torus U(1) of SU(2)R will be 2 times the SU(2)R charges.

Thus for the bosonic fields,

(µaQa)Ai,(i+1) = µ2Ai,(i+1) (2.5)

(µaQa)B(i+1),i = µ2B(i+1),i (2.6)

(µaQa)Φi = µ1Φi (2.7)

(µaQa)Aµi = 0 , (2.8)

and for the fermionic fields,

(µaQa)χA,i = −1

2
µ1 χA,i (2.9)

(µaQa)χB,i = −1

2
µ1 χB,i (2.10)

(µaQa)ψi =

(
1

2
µ1 − µ2

)
ψi (2.11)

(µaQa)ψΦ,i =

(
−1

2
µ1 − µ2

)
ψΦ,i . (2.12)

The corresponding expressions for the Hermitian conjugate fields are obtained by simply

changing the signs of the chemical potentials.

To obtain the Lagrangian density of N = 2 quiver gauge theory with chemical poten-

tials µa for the SU(2)R × U(1)R Cartan generators, one makes the following substitution

– 8 –
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in the Lagrangian density

Dµ −→ Dµ − µaQaδµ0 . (2.13)

Below we have written the Lagrangian densities for the fundamental scalar and spinor fields

of N = 2 quiver gauge theory. This will be important for the analysis in the following

sections in order to distinguish the adjoint from the bifundamental structures.

The Lagrangian density for the scalar fields with R-symmetry chemical potentials is

Lscalar =
M∑

i=1

{
Tr
[(
∂µAi,(i+1) + igAµiAi,(i+1) − igAi,(i+1)Aµ(i+1) − µ2δµ0Ai,(i+1)

)

×
(
∂µAi,(i+1) + igAµ(i+1)Ai,(i+1) − igAi,(i+1)Aµi + µ2δµ0Ai,(i+1)

)]

+ Tr
[(
∂µB(i+1),i + igAµ(i+1)B(i+1),i − igB(i+1),iAµi − µ2δµ0B(i+1),i

)

×
(
∂µB(i+1),i + igAµiB(i+1),i − igB(i+1),iAµ(i+1) + µ2δµ0B(i+1),i

)]

+ Tr
[(
∂µΦi + ig[Aµi,Φi] − µ1δµ0Φi

)(
∂µΦi + ig[Aµi,Φi] + µ1δµ0Φi

)]

+R−2 Tr
(
Ai,(i+1)Ai,(i+1) +B(i+1),iB(i+1),i + ΦiΦi

)

+
1

2
g2 Tr

[(
Ai,(i+1)Ai,(i+1) −A(i−1),iA(i−1),i

+Bi,(i−1)Bi,(i−1) −B(i+1),iB(i+1),i + [Φi,Φi]
)2]

− 2g2 Tr
[(
Ai,(i+1)B(i+1),i −Bi,(i−1)A(i−1),i

)

×
(
A(i−1),i Bi,(i−1) −B(i+1),i Ai,(i+1)

)]

− 2g2 Tr
[(
Ai,(i+1)Φi+1 − ΦiAi,(i+1)

)(
Ai,(i+1) Φi − Φi+1 Ai,(i+1)

)]

− 2g2 Tr
[(
B(i+1),iΦi−Φi+1B(i+1),i

)(
B(i+1),i Φi+1−Φi B(i+1),i

)]}
.(2.14)

Here the traces are always taken over the gauge indices of the N×N matrices. Observe that

the chemical potentials µ1 and µ2 act like negative mass squares for Φi and Ai,(i+1), B(i+1),i.

On a compact spatial manifold such as S3, these terms are balanced by the positive mass

square terms induced by the conformal coupling to curvature. We immediately observe

from (2.14) that N = 2 quiver gauge theory on S1 × S3 is well-defined as long as µ1, µ2 ≤
R−1. If the chemical potentials exceed this bound, the theory develops tachyonic modes

and there exists no stable ground state.

The Lagrangian density for the spinor fields with R-symmetry chemical potentials is

Lferm =

M∑

i=1

{
i

2
Tr
(
χA,i τµ

(
∂µχA,i + igAµiχA,i − igχA,iAµ(i+1) +

1

2
µ1δµ0χA,i

))

− i

2
Tr
((
∂µχA,i + igAµ(i+1)χA,i − igχA,iAµi −

1

2
µ1δµ0χA,i

)
τµ χA,i

)

+
i

2
Tr
(
χB,i τµ

(
∂µχB,i + igAµ(i+1)χB,i − igχB,iAµi +

1

2
µ1δµ0χB,i

))
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− i

2
Tr
((
∂µχB,i + igAµiχB,i − igχB,iAµ(i+1) −

1

2
µ1δµ0χB,i

)
τµ χB,i

)

+
i

2
Tr
(
ψi τµ

(
∂µψi + ig[Aµi, ψi] −

(
1

2
µ1 − µ2

)
δµ0ψi

))

− i

2
Tr
((
∂µψi + ig[Aµi, ψi] +

(
1

2
µ1 − µ2

)
δµ0ψi

)
τµ ψi

)

+
i

2
Tr
(
ψΦ,i τµ

(
∂µψΦ,i + ig[Aµi, ψΦ,i] −

(
1

2
µ1 + µ2

)
δµ0ψΦ,i

))

− i

2
Tr
((
∂µψΦ,i + ig[Aµi, ψΦ,i] +

(
1

2
µ1 + µ2

)
δµ0ψΦ,i

)
τµ ψΦ,i

)

+
g√
2

Tr
(
ǫcd
{
χA,i(λi)c, (χi)d

}
+ ǫcd

{
χA,i, (χi+1)c(λi)d

}

+ ǫcd
{
χA,i (λi)c, (χi+1)d

}
+ ǫcd

{
χA,i, (χi)c(λi)d

}

+ ǫcd
{
χB,i(λi)c, (χi+1)d

}
+ ǫcd

{
χB,i, (χi)c(λi)d

}

− ǫcd
{
χB,i (λi)c, (χi)d

}
− ǫcd

{
χB,i, (χi+1)c(λi)d

}

+ ǫcd
{
(χi)cΦi, (χi)d

}
+ ǫcd

{
(χi)c Φi, (χi)d

}

+
{
χA,iΦi+1, χB,i

}
+
{
χA,i Φi, χB,i

}

−
{
χB,iΦi, χA,i

}
−
{
χB,i Φi+1, χA,i

})
}
. (2.15)

Here the traces are always taken over the gauge indices of the N × N matrices. Note

that the potential part of the Lagrangian density has been written in terms of the SU(2)R
doublets given in eqs. (A.43)–(A.44) for notational simplicity.

Finally, as the gauge fields have zero charge under SU(2)R×U(1)R, the gauge field part

of the Lagrangian density is unaffected by introducing the R-symmetry chemical potentials.

Nonetheless, we give the result here for convenience:

Lgauge =
1

4

M∑

i=1

TrF i
µνF

i
µν (2.16)

where of course F i
µν = ∂µA

i
ν − ∂νA

i
µ + ig[Ai

µ, A
i
ν ] and the trace is taken over the gauge

indices of the N ×N matrices.

3. Zero-coupling limit and the matrix model

The matrix model we will consider is defined by integrating out the fluctuations of the

quantum fields. In section 3.1 we therefore first give a brief description of how to compute

the one-loop quantum effective action with non-zero chemical potentials conjugate to the

R-charges. The details of this computation are well-described in the literature (see, e.g.,

appendix A of [8]). In section 3.2 we then proceed to construct the matrix model out of

the 1-loop quantum effective action.
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3.1 One-loop quantum effective action

The partition function for the grand canonical ensemble has the path integral representation

Z =

∫
DAµ DφDψ e−

R
S1×S3 d4x

√
|g| (Lgauge+Lscalar+Lferm) (3.1)

with Lgauge,Lscalar and Lferm being the Lagrangian densities with R-symmetry chemical

potentials given by eqs. (2.16), (2.14) and (2.15), respectively, and where the measures

DAµ, Dφ and Dψ are the products of the measures over all the gauge fields, scalar fields

and spinor fields, respectively. We will obtain an effective action from this expression by

taking the free limit g → 0 of the tree-level action. However, since the theory is defined

on a compact spatial S3 one must impose the Gauss law constraint that all states be

gauge invariant. We perform the projection onto gauge invariant states by using A0i as a

Lagrange multiplier,

Aµi(x) −→ Ãµi(x) + δµ0ai/g (3.2)

where Ã0i integrates to zero over S1 × S3 and ai are constant Hermitian matrices which

by gauge invariance can be assumed diagonal, ai = diag(q1i , . . . , q
N
i ). To obtain the correct

zero coupling limit one inserts the decomposition (3.2) into the action given through (2.14)–

(2.16) and then takes the g → 0 limit.

As the quantum fields are defined on S1×S3 one decomposes them into Fourier modes

on S1 and S3 spherical harmonics. More specifically, let τ denote the direction along the

S1. We will use the convention that any field φ defined on S1 × S3 has the Fourier mode

decomposition

φ(τ,x) =
∞∑

k=−∞
eiωkτφ[k](x) (3.3)

where the quantized Matsubara frequencies are ωk = 2πk
β for bosons and ωk = (2k+1)π

β

for fermions giving, respectively, periodic and antiperiodic boundary conditions around

the thermal circle.9 One then decomposes the spatial components of the gauge field into

spherical harmonics on S3 by writing them as a sum of a transverse (i.e. divergenceless)

vector field A⊥
i and a longitudinal vector field ∇Fi where Fi is a scalar function. That is,

for k = 1, 2, 3 we decompose

Ãk
i = (A⊥

i )k + (∇Fi)
k (3.4)

and insert the expression on the right hand side into the action given through (2.14)–(2.16).

The quantum effective action Γ ≡ − lnZ is defined by integrating out all fluctuating

fields (cf. (3.1)), leaving an expression that only depends on the zero mode ai. It is

convenient to express Γ as a functional of the holonomy matrix of a closed curve wound

around the thermal circle, i.e. Ui ≡ eiβai after decomposing the gauge field according

to (3.2) and taking g → 0. By performing the traces over the Matsubara frequencies and

over the angular momenta h, with appropriate eigenvalues of the Laplacian ∇2 on S3 and

9However, for the Fadeev-Popov ghosts the boundary conditions are taken periodic.
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quantum field eigenvalue notation in text degeneracy (Dh)

transverse vector A⊥ −(h+ 1)2R−2 −∆2
g 2h(h+ 2)

longitudinal vector ∇F −h(h+ 2)R−2 −∆2
s (h+ 1)2

real scalar A0, φ −h(h+ 2)R−2 −∆2
s (h+ 1)2

Weyl spinor ψ −
(
h+ 1

2

)2
R−2 −∆2

f h(h+ 1)

Table 1: Eigenvalues and corresponding degeneracies of the S3 spatial Laplacian ∇2 ≡ ∂2
1 +∂2

2 +∂2
3

for various quantum fields defined on S3. Here R denotes the radius of S3. The irreducible

representations of the SO(4) isometry group are labelled by the angular momentum h which has

the range h = 0, 1, 2, . . . for all the fields except for the longitudinal vector field ∇F where h starts

from 1.

the associated degeneracies (cf. table 1) one finds the following expression for the quantum

effective action in terms of the variables x ≡ e−β and yj ≡ eβµj

Γ[Ui] = −
M∑

i=1

∞∑

l=1

[
1

l

(
6x2l − 2x3l

(1 − xl)3

)
+

1

l

(
xl + x2l

(1 − xl)3

)(
yl
1 + y−l

1

)

+
(−1)l+1

l

(
2x3l/2

(1 − xl)3

)
(
y

l/2
1 + y

−l/2
1

)(
yl
2 + y−l

2

)
](

TrU l
i TrU−l

i

)

−
M∑

i=1

∞∑

l=1

[
1

l

(
xl + x2l

(1 − xl)3

)(
yl
2 + y−l

2

)
+

(−1)l+1

l

(
2x3l/2

(1 − xl)3

)
(
y

l/2
1 + y

−l/2
1

)
]

×
(

TrU l
i TrU−l

i+1 + TrU−l
i TrU l

i+1

)
. (3.5)

Note that the adjoint holonomy factors come from the vector multiplets
(
Aµi,Φi, ψΦ,i, ψi

)
,

and the bifundamental factors come from the hypermultiplets
(
Ai,(i+1), B(i+1),i, χA,i, χB,i

)
.

For later convenience we define here the total single-particle partition functions for the

bosonic and fermionic sectors of the vector and hypermultiplets:

zB
ad(x; y1, y2) ≡ 6x2 − 2x3

(1 − x)3
+

x+ x2

(1 − x)3
(
y1 + y−1

1

)
(3.6)

zF
ad(x; y1, y2) ≡ 2x3/2

(1 − x)3
(
y

1/2
1 + y

−1/2
1

)(
y2 + y−1

2

)
(3.7)

zB
bi(x; y1, y2) ≡ x+ x2

(1 − x)3
(
y2 + y−1

2

)
(3.8)

zF
bi(x; y1, y2) ≡ 2x3/2

(1 − x)3
(
y

1/2
1 + y

−1/2
1

)
. (3.9)

These results are consistent with ref. [6], eqs. (3.17)-(3.18), where the summation over rep-

resentations is taken to run over the adjoint and the bifundamental representations, and the

charges Q are taken as β times the Cartan charges Q1, Q2 given implicitly through (2.5)–

(2.12).
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3.2 The matrix model

The matrix model we will consider is defined by the partition function

ZMM =

∫ M∏

i=1

[
DUi

]
exp

(
−Γ[Ui]

)
(3.10)

where Γ[Ui] is given in (3.5). It is convenient for taking the continuum limit to rewrite

Γ[Ui] directly in terms of the zero modes ai. To simplify the notation, define the rescaled

zero mode αi ≡ βai so that Ui = eiαi . Hence

ZMM =

∫ M∏

i=1

[
Dαi

]
exp

(
−
∑

m6=n

(
Vad(α

m
i − αn

i ) + Vbi(α
m
i − αn

i+1)
))

(3.11)

where the adjoint and bifundamental potentials are, respectively

Vad(θ) ≡ − ln

∣∣∣∣ sin
(
θ

2

)∣∣∣∣−
∞∑

l=1

1

l

(
zB
ad(x

l; yl
1, y

l
2) + (−1)l+1zF

ad(x
l; yl

1, y
l
2)
)

cos(lθ)

= ln 2 +
∞∑

l=1

1

l

(
1 − zB

ad(x
l; yl

1, y
l
2) − (−1)l+1zF

ad(x
l; yl

1, y
l
2)
)

cos(lθ) (3.12)

Vbi(θ) ≡ −
∞∑

l=1

2

l

(
zB
bi(x

l; yl
1, y

l
2) + (−1)l+1zF

bi(x
l; yl

1, y
l
2)
)

cos(lθ) . (3.13)

We will now take the continuum limit N → ∞. It is convenient to introduce eigenvalue

distributions ρi(θi) proportional to the density of the eigenvalues eiθi of Ui at the angle

θi ∈ [−π, π]. Here ρi must be everywhere non-negative, and we choose its normalization so

that for any fixed i ∫ π

−π
dθi ρi(θi) = 1 . (3.14)

Furthermore we define the Fourier modes of ρi and Vad and Vbi:

ρl
i ≡

∫ π

−π
dθi ρi(θi) cos(lθi) , V l

ad ≡
∫ π

−π
dθ Vad(θ) cos(lθ) , V l

bi ≡
∫ π

−π
dθ Vbi(θ) cos(lθ)

(3.15)

so that, assuming ρi, Vad, Vbi to be even functions, we have the Fourier expansions

ρi(ζ) =
1

π

∞∑

l=0

ρl
i cos(lζ), Vad(ζ) =

1

π

∞∑

l=0

V l
ad cos(lζ), Vbi(ζ) =

1

π

∞∑

l=0

V l
bi cos(lζ). (3.16)

The continuum limit is obtained by making the substitution10

1

N

N∑

n=1

[
· · ·
]
−→

∫ π

−π
dθi ρi(θi)

[
· · ·
]

(3.17)

10Here it is implied that the content of the brackets
ˆ

· · ·
˜

carries an i label.
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Furthermore we replace the path integral measure
[
Dαi

]
−→

[
Dλi

]
. Thus, in the contin-

uum limit the path integral of the matrix model takes the form

ZMM =

∫ M∏

i=1

[
Dλi

]
exp

(
−SMM[ρ]

)
(3.18)

where the action for the eigenvalue distribution functions ρ is

SMM[ρ] =
N2

π

M∑

i=1

∞∑

l=1

(
(ρl

i)
2V l

ad(T ;µ1, µ2) + ρl
iρ

l
i+1V

l
bi(T ;µ1, µ2)

)
. (3.19)

To summarize, the matrix model under study is defined by eqs. (3.18)–(3.19).

4. Phase structure

The term − ln
∣∣sin

(
θ
2

)∣∣ in the adjoint potential (3.12) originating from the change of mea-

sure is a temperature-independent repulsive potential. On the other hand, the remaining

parts of the adjoint and bifundamental potentials (3.12)–(3.13) provide an attractive force11

which grows from zero to infinite strength as the temperature is raised from zero to infin-

ity. One would therefore expect that at low temperatures, the stable saddle points of the

matrix model are characterized by the eigenvalues of the holonomy matrices Ui spreading

out uniformly over the unit circle, whereas at high temperatures the attractive potential

causes them to localize [6].

4.1 Low-temperature solution and phase transition

We now consider the saddle points of the matrix model action (3.19),

0 =
∂SMM

∂ρl
i

=
N2

π

(
2ρl

iV
l
ad +

(
ρl

i−1 + ρl
i+1

)
V l

bi

)
. (4.1)

For M ≥ 2, this condition translates into M linear equations in M unknowns:

2ρl
iV

l
ad +

(
ρl

i−1 + ρl
i+1

)
V l

bi = 0 . (4.2)

The determinant of this system of equations is generically non-zero, so we find the unique

solution ρl
i = 0, corresponding to the flat distribution ρi = 1

2π . Thus we conclude that the

eigenvalues of the holonomy matrices Ui are distributed uniformly on each of the M unit

circles. This defines the low-temperature solution of the matrix model.

The leading O(N2) contribution to the free energy computed from the path inte-

gral (3.18) comes from the action SMM[ρ]. However, as ρl
i = 0, the first non-zero contribu-

tion to the free energy in this phase comes from a Gaussian integral over the fluctuations

about the solution ρi = 1
2π . The free energy is therefore of O(1) with respect to N , sug-

gesting that the theory in this phase describes a non-interacting gas of color singlet states.

11The fact that the remaining parts of (3.12)–(3.13) are attractive potentials can be shown following the

argument in [6], footnote 32.
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Furthermore, we note that the Polyakov loop W (C) ≡ TrP exp
(
ig
∫ β
0 dx0A0

i

)
has zero

expectation value since the trace averages to zero in the uniform eigenvalue distribution.

In particular, this implies that the ZN center symmetry is left unbroken in this phase.

Accordingly, we label this phase “confining”.

For M ≥ 2 the solution ρi = 1
2π will be a minimum of the action until we reach values

of (T ;µ1, µ2) for which

0 = detHij =

∣∣∣∣∣
∂2SMM

∂ρl
i ∂ρ

l
j

∣∣∣∣∣ (4.3)

for any fixed l. When the temperature or the chemical potentials are raised above these

critical values, the flat distribution becomes an unstable saddle point of the matrix model,

and the model thus enters a new phase which we will discuss in the next section. For now

we note that (4.3) defines a phase transition condition of the matrix model.

It will be convenient to express the Hessian matrix in terms of the variables ξl ≡ 2V l
ad

and ηl ≡ V l
bi. Note first that in the special case M = 2, due to the identification i ≃

i+M = i+ 2, the Hessian matrix obtained from (3.19) takes the form12

H =

(
ξl 2ηl

2ηl ξl

)
. (4.4)

The determinant factorizes as detH = −4
(
ηl − 1

2ξl
)(
ηl + 1

2ξl
)
. For M ≥ 3 the Hessian

matrix is a tridiagonal, periodically continued matrix:

Hij =

{
ξl for j = i

ηl for j = i± 1
(4.5)

where, as usual, we make the identifications i ≃ i +M and j ≃ j +M . The determinant

of H factorizes as follows13

det




ξ η η

η ξ
. . .

. . .
. . . η

η η ξ




=
M∏

j=1

(
ξ + 2 cos

(
2πj

M

)
η

)
. (4.6)

Thus, the determinant of H vanishes on any of the lines ξl + 2 cos
(

2πj
M

)
ηl = 0 for j =

1, . . . ,M . To single out the physically relevant condition for the vanishing of detH we will

first consider the case M = 12 to gain intuition. For M = 12 the determinant in particular

factorizes as

detH = −36 ξ2l
(
η2

l − ξ2l
)2
(
η2

l − ξ2l
4

)(
η2

l − ξ2l
3

)2

(4.7)

where l is fixed. In figure 2 we have divided the (ξl, ηl) plane into regions where H is

positive-definite (denoted by +) and where H is indefinite (denoted by −).

12We omit here, and in the following, the overall factor of N2

π
in eq. (3.19) for notational simplicity.

13This formula is a special case of (B.6).
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Figure 2: Regions of positive-definiteness and indefiniteness of H for the case M = 12. Regions

where H is positive-definite (corresponding to a local minimum of SMM) are marked by +; regions

where H is indefinite (corresponding to an unstable saddle point of SMM) are marked by −. The

lines represent the locus of detH = 0. The physically accessible region of the (ξl, ηl) plane is bounded

from above by the ξl axis and from below by the line of the numerically smallest negative slope.

This is illustrated by the dot which corresponds to (T ;µ1, µ2) = (0.1; 0.8, 0.8) and l = 1. The arrow

shows how the dot will move as the temperature is increased, keeping µ1 and µ2 fixed.

Thus regions marked by + correspond to a local extremum (minimum) of SMM, and

regions marked by − correspond to unstable saddle points. In figure 2 we have furthermore

marked the region occupied by the N = 2 quiver gauge theory matrix model in the low

temperature phase by plotting (ξ1, η1) for (T ;µ1, µ2) = (0.1; 0.8, 0.8). For fixed chemical

potentials, zB
ad, z

F
ad, z

B
bi, z

F
bi all increase monotonically with the temperature. Therefore, as

the temperature increases, the dot in figure 2 will move as indicated and hit the instability

line ηl = −1
2ξl at the phase transition temperature.

By the same analysis, for any M ≥ 2 the phase transition occurs at the instability line

ηl = α(M)ξl where α(M) is the numerically smallest negative slope of the zero lines of the

Hessian determinant. For all M ≥ 3 we find from (4.6) that α(M) = −1
2 (corresponding

to j = M). For M = 2 we also find α(M) = −1
2 . Indeed, note that for M ≥ 2 the matrix

obtained by substituting ηl = −1
2 ξl in eqs. (4.4) and (4.5) will have a zero eigenvalue (with

(1, 1, . . . , 1) as an eigenvector) and hence zero determinant.

The large M limit As a consistency check, we can derive that limM→∞ α(M) = −1
2 by

a different route. We take the continuum limit M → ∞ in the quiver direction. The quiver

label i thus becomes a continuous angular parameter ϑ which we take to be 2π-periodic;
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i.e., we identify ϑ ≃ ϑ+ 2π. Accordingly we make the substitutions

(ρl
i)

2 −→ (ρl(ϑ))2 (4.8)

(ρl
iρ

l
i+1) −→ −1

2

(
ρ̇l(ϑ)

)2
+ (ρl(ϑ))2 (4.9)

where ˙ denotes d
dϑ . The matrix model action (3.19) thus becomes14

SMM[ρ] =
N2M

(2π)2

∞∑

l=1

∫ 2π

0
dϑ
[
(ξl + 2ηl)(ρ

l(ϑ))2 − ηl

(
ρ̇l(ϑ)

)2]
. (4.10)

The Euler-Lagrange equations obtained from this action are those of a harmonic oscillator,

ηlρ̈
l(ϑ) + (ξl + 2ηl) ρ

l(ϑ) = 0 (4.11)

where l = 1, 2, . . .. Note here that it is the bifundamental contribution in (3.19) that gives

rise to the derivative term in (4.10) and in turn to the mass term for the harmonic oscillator.

Thus, the harmonic oscillator EOM’s in the large M limit is a pure ‘quiver phenomenon’.

Solutions to these equations will become unstable when the tension τ ≡ (ξl + 2ηl) goes

from τ > 0 to τ < 0. Thus, for large M , the phase transition will occur when ηl = −1
2ξl,

consistent with what we found above.

We now return to the phase transition condition ηl = α(M)ξl. Since zB
ad, z

F
ad, z

B
bi, z

F
bi

are all monotonically increasing as functions of x and 0 ≤ x < 1, the l = 1 condition is the

strongest. Therefore, the phase transition condition for M ≥ 2 is

for M ≥ 2 :
(
zB
ad(x; y1, y2) + zF

ad(x; y1, y2)
)

+ 2
(
zB
bi(x; y1, y2) + zF

bi(x; y1, y2)
)

= 1 . (4.12)

Finally, in the special case M = 1 we immediately obtain V l
ad + V l

bi = 0 from (4.1) due to

the identification i ≃ i +M = i + 1. Putting l = 1, this is precisely the phase transition

condition (4.12). We thus conclude that for any M the phase transition condition is

(
zB
ad(x; y1, y2) + zF

ad(x; y1, y2)
)

+ 2
(
zB
bi(x; y1, y2) + zF

bi(x; y1, y2)
)

= 1 . (4.13)

In figure 3 below we have plotted the curves in the (T, µ) plane obtained from this condition

for the cases (µ1, µ2) = (µ, 0) ; (µ1, µ2) = (0, µ) and (µ1, µ2) = (µ, µ). For each of these

cases, the relevant curve defines the phase diagram of N = 2 quiver gauge theory as a

function of both temperature and chemical potential. Note that, as discussed in section

2.2, if one or both of the chemical potentials are larger than the inverse radius of the spatial

manifold S3, the theory develops tachyonic modes and becomes ill-defined. Therefore the

line µ = 1/R defines a boundary of the phase diagram.

The phase transition condition (4.13) defines a phase transition temperature TH(µ1, µ2)

as a function of the chemical potentials. We will refer to TH(µ1, µ2) as the Hagedorn

temperature of N = 2 quiver gauge theory. This terminology will be justified in section

4.2. We remark that the Hagedorn temperature at zero chemical potential is

TH = − 1

ln(7 − 4
√

3)
≈ 0.37966 (4.14)

14The extra prefactor M
2π

comes from changing the counting measure over i to the measure dϑ.
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in units of R−1, the inverse radius of the S3. This is exactly the Hagedorn temperature

for N = 4 SYM theory (cf. [6, 7]). The origin of this fact can be traced to the observation

in [30] that in the large N limit the correlation functions of N = 4 U(N) SYM theory equal

the corresponding correlation functions of the N = 2 quiver gauge theories obtained from

orbifold projections. Since our computations rely on perturbation theory (namely, taking

the g → 0 limit of the action and then performing Gaussian path integrations), and we are

furthermore taking the N → ∞ limit, we should expect that the matrix model defined out

of the quantum effective action will have the same behavior for the N = 2 quiver gauge

theory as for the N = 4 SYM theory.

Furthermore, for small chemical potentials the Hagedorn temperature is given by

TH(µ1, µ2) =
1

β0
+ c
(
µ2

1 + 2µ2
2

)
+ c11µ

4
1 + c12µ

2
1µ

2
2 + c22µ

4
2 + O(µ6

i ) (4.15)

where the coefficients are

β0 = − ln(7−4
√

3) , c = −
√

3

18
, c11 = − β0

864

(
362β0−209

√
3β0+2896

√
3−5016

−627+362
√

3

)
(4.16)

c12=
β0

216

(
1810β0−1045

√
3β0−2896

√
3+5016

−627 + 362
√

3

)
, c22=

β0

108

(
362β0−209

√
3β0−1448

√
3+2508

−627 + 362
√

3

)

(4.17)

4.2 Solution above the Hagedorn temperature

As the temperature is increased beyond T > TH , the attractive terms in the pairwise

potential continue to increase in strength, and so the eigenvalues will become increasingly

localized. The precise distribution can be determined, following [6], by the condition that

a single additional eigenvalue αi added on the i’th circle experiences no net force from the

other eigenvalues on the circles i− 1, i and i+ 1:

0 =

∫ π

−π
dζ 2V ′

ad(αi − ζ)ρi(ζ) +

∫ π

−π
dζ V ′

bi(αi − ζ)
(
ρi−1(ζ) + ρi+1(ζ)

)
(4.18)

where Vad and Vbi are given in (3.12) and (3.13), respectively. This provides M equilibrium

conditions for the lattice action

Slatt = N
M∑

i=1

∞∑

l=1

alρ
l
i + blρ

l
i−1 + blρ

l
i+1

l

(
TrU l

i + TrU−l
i

)
(4.19)

where

al = zB
ad(x

l; yl
1, y

l
2) + (−1)l+1zF

ad(x
l; yl

1, y
l
2) (4.20)

bl = zB
bi(x

l; yl
1, y

l
2) + (−1)l+1zF

bi(x
l; yl

1, y
l
2) . (4.21)

The exact solution of (4.19) was found in [31]. It takes the form

ρi(θ) =
1

π

(
sin2

(
θi
0

2

)
− sin2

(
θ − αi

2

))1/2 ∞∑

k=1

Qi
k cos

(
(k − 1/2)(θ − αi)

)
, i = 1 . . .M

(4.22)
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T

µ

0,8

0
0,350,20

1

0,2

0,250,15 0,30,1

0,6

0,05

0,4

Figure 3: Phase diagram of N = 2 quiver gauge theory. The outermost curve is the transition

line corresponding to (µ1, µ2) = (µ, 0). It has slope 0 in the neighborhood of the point (T, µ) =

(0, 1). The inbetween curve corresponds to (µ1, µ2) = (0, µ), with slope − ln 2 near (0, 1). The

innermost curve corresponds to (µ1, µ2) = (µ, µ), with slope − ln 4 near (0, 1). The phase transition

temperature at zero chemical potential is common for the three curves and equals T = − 1
ln(7−4

√

3)
≈

0.37966 as in the N = 4 SYM case.

where

Qi
k = 2

∞∑

j=0

(
aj+kρ

j+k
i + bj+kρ

j+k
i−1 + bj+kρ

j+k
i+1

)
Pj(cos θi

0) . (4.23)

The support of ρi is [αi − θi
0, αi + θi

0]. Here one must impose the consistency requirement

ρn
i =

∫ π

−π
dθρi(θ) cos(nθ) . (4.24)

For simplicity the following analysis will be carried out only in the truncated case am>1 =

bm>1 = 0 which shares the same qualitative behavior with the general case. For n = 1, the

consistency condition (4.24) then becomes

ρ1
i =

2

π

(
a1ρ

1
i + b1ρ

1
i−1 + b1ρ

1
i+1

) ∫ θi
0

−θi
0

dξ

(
sin2

(
θi
0

2

)
− sin2

(
ξ

2

))1/2

cos

(
ξ

2

)
cos(ξ + αi)

= cosαi

(
a1ρ

1
i + b1ρ

1
i−1 + b1ρ

1
i+1

)
(2s2i − s4i ) (4.25)

where s2i ≡ sin2
(

θi
0
2

)
. In analogy with [6], θi

0 is determined from Qi
1 = Qi

0 + 2, leading to

the M equations

1 = 2s2i
(
a1ρ

1
i + b1ρ

1
i−1 + b1ρ

1
i+1

)
. (4.26)
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By means of (4.26), one can rewrite (4.25) as the set of M coupled equations

a1(ρ
1
i )

2 +
(
b1ρ

1
i−1 + b1ρ

1
i+1 − a1 cosαi

)
ρ1

i + cosαi

(
1

4
− b1ρ

1
i−1 − b1ρ

1
i+1

)
= 0 . (4.27)

If one allows some of the αi to be nonzero, one finds for any fixed µ1, µ2 a range of

temperatures above TH(µ1, µ2) where (4.27) has no solution such that all si, given by (4.26),

satisfy 0 ≤ s2i ≤ 1. Thus one must have α1 = · · · = αM = 0.

With these centers of masses of the eigenvalue distributions, requiring that 0 ≤ s2i ≤ 1

leads to a unique solution of (4.27). This solution has all ρ1
i equal, as well as all si equal

and given by

s2i = sin2

(
θi
0

2

)
= 1 −

√
1 − 1

a1 + 2b1
. (4.28)

With the assumption am>1 = bm>1 = 0 the exact solution (4.22)–(4.23) thus truncates to

ρi(θ) =
1

πs2i

√
s2i − sin2

(
θ

2

)
cos

(
θ

2

)
. (4.29)

It is immediately clear from (4.28) that for temperatures above the Hagedorn temperature

one has θi
0 < π; i.e., the eigenvalue distribution becomes gapped. In particular we note that

the phase above the Hagedorn temperature has unbroken quiver translational invariance;

i.e. ρi = ρi+1. The unbroken quiver translational invariance is expected on more general

grounds due to the perturbative equivalence between N = 4 SYM theory and N = 2

quiver gauge theory [30], although it should be noted that in ref. [30] the gauge theories

are studied on R
4 rather than S1 × S3.15

Free energy slightly above the Hagedorn temperature Using the Hagedorn tem-

perature for small chemical potentials given in (4.15)–(4.17) we can compute the free

energy slightly above the Hagedorn temperature in analogy with [9]. Defining ∆T ≡
T − TH(µ1, µ2), we find for 0 < ∆T ≪ 1 the perturbative expansion

F

N2M
= −β0

3

8

(
1 − β0

2
√

3 + β0

36

(
µ2

1 + 2µ2
2

)
+ O(µ4

i )

)
∆T

−β2
0

√
3

8

(
1 − β0

4 +
√

3β0

24
√

3

(
µ2

1 + 2µ2
2

)
+ O(µ4

i )

)
∆T 3/2 + O(∆T 2) . (4.30)

High-temperature behavior of free energy In the T → ∞ limit the pairwise at-

tractive potentials grow to infinite strength, so the eigenvalues of the holonomy matrices

Ui localize to extremely small intervals; i.e. the eigenvalue distribution functions will be-

come delta functions, ρi(θi) → δ(θi). (This is also clear from (4.28) since for T → ∞
one has a1, b1 → ∞ and thus θ0 → 0. The normalization condition (3.14) then implies

15Note that non-perturbative effects could potentially destroy the quiver translational invariance. How-

ever, the computation carried out in this section is only valid perturbatively, so we would not expect to see

such effects. See refs. [32 – 36] for work on non-perturbative equivalence between parent/daughter gauge

theories related by orbifold and orientifold projections.
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ρi(θi) → δ(θi).) Therefore ρl
i → 1, and so from (3.19) and (3.6)–(3.9) we find that the free

energy in the T → ∞ limit is

F = −N2M

(
π2T 4

6
+
T 2

4

(
µ2

1 + 2µ2
2

)
− 1

32π2

(
µ4

1 − 4µ2
1µ

2
2

))
Vol(S3) . (4.31)

Here we have applied the polylogarithm regularization procedure described in appendix

E of ref. [37] in order to obtain (4.31).16 We note that the free energy scales as N2M

as N → ∞. This is to be expected from the orbifold projection invariant form of the

fields (A.15)–(A.16) and (A.31)–(A.32), given that the free energy scales as N2 for N = 4

U(N) SYM theory for high temperatures in the N → ∞ limit (cf. eq. (5.62) of [6]).

The fact that the free energies (4.30) and (4.31) are both of O(N2M) with respect

to N suggests that the gauge theory in the phase above the Hagedorn temperature de-

scribes a non-interacting plasma of color non-singlet states. Furthermore, from the fact

that the eigenvalue distribution (4.28)–(4.29) is gapped we can immediately conclude that

the Polyakov loop W (C) has non-zero expectation value as the trace does not average to

zero in this case. In particular, this implies that the ZN center symmetry is spontaneously

broken in this phase. Accordingly, we label this phase “deconfined”. Thus, we conclude

that the phase transition defined by eq. (4.13) is a confinement/deconfinement phase tran-

sition. Since furthermore the derivative of the free energy with respect to the temperature

is discontinuous at the phase transition temperature TH(µ1, µ2), we conclude that the

transition is of first order. Furthermore, cf. [7, 6], we identify it with a Hagedorn phase

transition, and TH(µ1, µ2) is thus the Hagedorn temperature of N = 2 quiver gauge theory.

Twisted partition function In analogy with [38], one may study the twisted partition

function for the quiver gauge theory, taking the boundary conditions for the spinor fields

on the S1 to be periodic rather than antiperiodic. In this case the Matsubara frequencies

for the spinor fields will be the same as for the bosonic fields, and the twisted partition

function Z̃ = Tr(−1)F e−βH = e−eΓ[Ui] may be obtained directly from (3.5) by replacing

(−1)l+1 −→ (−1). Following [38] we choose to exhibit the ZM symmetry of the (twisted)

partition function by rewriting the adjoint and bifundamental holonomy factors in terms

of eigenvectors under quiver node displacements i→ i+ 1. Indeed, define for ω ≡ e2πi/M ,

Ωl
k ≡

M∑

j=1

ω−kj U l
j . (4.32)

Under the quiver node displacement U l
i −→ U l

i+1 we find Ωl
k −→ ωkΩl

k so that Ωl
k is an

eigenvector under the displacement with the eigenvalue ωk. Writing the holonomy factors

16Note that there is a minus sign missing on the right hand side of (E.4) for the n 6= 1 case.
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in terms of Ωl
k, the twisted quantum effective action takes the form

Γ̃[Ui] = − 1

M

M∑

k=1

∞∑

l=1

[
1

l

(
6x2l − 2x3l

(1 − xl)3

)
+

1

l

(
xl + x2l

(1 − xl)3

)(
yl
1 + y−l

1

)

− 1

l

(
2x3l/2

(1 − xl)3

)
(
y

l/2
1 + y

−l/2
1

)(
yl
2 + y−l

2

)
](

Tr Ωl
k Tr Ω−l

−k

)

− 1

M

M∑

k=1

∞∑

l=1

[
1

l

(
xl + x2l

(1 − xl)3

)(
yl
2 + y−l

2

)
− 1

l

(
2x3l/2

(1 − xl)3

)
(
y

l/2
1 + y

−l/2
1

)
]

× ω−k
(

Tr Ωl
k Tr Ω−l

−k + Tr Ω−l
k Tr Ωl

−k

)
. (4.33)

It would be interesting to study the phase structure for the twisted partition function.

4.3 Quantum mechanical sectors

Since N = 2 quiver gauge theory is a conformal field theory, we can exploit the state/opera-

tor correspondence and map the Hamiltonian H to the dilatation operator D. As a conse-

quence, the partition function of thermal N = 2 quiver gauge theory in the grand canonical

ensemble takes the form

Z(T ;µ1, µ2) = TrH
(
e−βD+βµiQi

)
. (4.34)

Here the trace is taken over the entire Hilbert space H of gauge invariant operators. For

weak ’t Hooft coupling λ≪ 1, the dilatation operator D can be expanded perturbatively17

D = D0 +
∞∑

n=2

λn/2Dn . (4.35)

We let Q denote the total charge with respect to the Cartan generators of SU(2)R×U(1)R,

Q = Q1 + Q2, with µ as the associated chemical potential.18 Taking λ = 0, the partition

function (4.34) can be rewritten as

Z(T ;µ) = TrH exp
(
− β(D0 −Q) − β(1 − µ)Q

)
. (4.36)

Following [9], we now consider the region of small temperature and near-critical chemical

potential

T ≪ 1 , 1 − µ≪ 1 . (4.37)

In this region, the Hilbert space of gauge invariant operators of N = 2 quiver gauge the-

ory truncates to certain subsectors. To show this, first observe that in the region (4.37),

operators with D0 > Q appear with an extremely small weight factor in the partition func-

tion (4.36) since β ≫ 1. On the other hand, for operators with D0 = Q, the weight factor

17This was shown for N = 4 U(N) SYM theory in [39, 40].
18Recall that in section 2.2 we defined the generator of the Cartan subalgebra of SU(2)R to be σz rather

than 1
2
σz so that we have the associated charges Q1, Q2 implicitly given through eqs. (2.5)–(2.12). It is

these charges we are referring to here, rather than the R-charges given in table 2.
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is non-negligible precisely because 1 − µ ≪ 1. Therefore, the partition function (4.36) is

dominated by contributions from operators belonging to the subsector

H0 ≡
{
O ∈ H

∣∣ (D0 −Q)O = 0
}
. (4.38)

We thus conclude that by taking the near-critical limit

x −→ 0 , xy fixed , (4.39)

the full Hilbert space H of gauge-invariant operators effectively truncates to the subsector

H0. We will consider three concrete examples of this truncation below, obtained by either

turning off one of the R-symmetry chemical potentials, or by putting them equal. As we

remark below, the resulting subsectors are in a certain sense quantum mechanical.

Case 1: The 1/2 BPS sector We take (µ1, µ2) = (µ, 0), and thus the total Cartan

charge is Q = Q1. Taking the near-critical limit (4.39) of the partition function (3.10) then

yields

Z(x; y) −→
∫ M∏

i=1

[
DUi

]
exp

(
M∑

i=1

∞∑

l=1

(xy)l

l
TrU l

i TrU−l
i

)
. (4.40)

Since the scalar field Φi has D0 = Q = 1, we therefore conclude that the Hilbert space of

gauge invariant operators truncates to the 1/2 BPS sector spanned by multi-trace operators

of the form

Tr
(
ΦJ1

i1

)
Tr
(
ΦJ2

i2

)
· · ·Tr

(
ΦJk

ik

)
. (4.41)

It is clear that in the near-critical limit (4.39) all operators with covariant derivatives

decouple. Thus all modes originating from defining a field theory on the spatial manifold

S3 are removed, and the locality of the field theory is lost. In this sense the resulting

subsector of the field theory is quantum mechanical.

Case 2: The SU(2) sector We take (µ1, µ2) = (0, µ), and thus the total Cartan charge

is Q = Q2. Taking the near-critical limit (4.39) of the partition function (3.10) then yields

Z(x; y) −→
∫ M∏

i=1

[
DUi

]
exp

(
M∑

i=1

∞∑

l=1

2(xy)l

l
TrU l

i TrU−l
i+1

)
. (4.42)

Since the scalar fields Ai,(i+1) and B(i+1),i both have D0 = Q = 1, we therefore conclude

that the Hilbert space of gauge invariant operators truncates to the SU(2) sector spanned

by multi-trace operators of the form

k∏

j=1

Tr
(
Z

(j)
1→

Z
(j)
2→

· · ·Z(j)
Jj→

)
(4.43)

where any letter Z
(j)
ij→

is one of the scalars Ai,(i+1) or B(i+1),i. The subscripts ‘→’ denote

that the quiver labels on the fields in question must trace out a closed loop on the quiver

diagram in figure 1 so as to ensure gauge invariance. I.e., an example of a gauge invariant

single-trace operator is Tr
(
Ai,(i+1)A(i+1),(i+2)B(i+2),(i+1)B(i+1),i

)
.
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Case 3: The SU(2|3)/ZM sector We take (µ1, µ2) = (µ, µ) and thus the total Cartan

charge is Q = Q1 +Q2. Taking the near-critical limit (4.39) of the partition function (3.10)

then yields

Z(x; y) −→
∫ M∏

i=1

[
DUi

]
exp

[
M∑

i=1

∞∑

l=1

(
(xy)l + 2(−1)l+1(xy)3l/2

l

)
TrU l

i TrU−l
i

+
M∑

i=1

∞∑

l=1

2(xy)l

l
TrU l

i TrU−l
i+1

]
. (4.44)

Since the scalar fields Ai,(i+1), B(i+1),i,Φi all have D0 = Q = 1, and the Weyl spinor field

ψΦ,i has D0 = Q = 3
2 , we therefore conclude that the Hilbert space of gauge invariant

operators truncates to a subsector spanned by multi-trace operators of the form

k∏

j=1

Tr
(
W

(j)
1→

W
(j)
2→

· · ·W (j)
Jj→

)
(4.45)

where any letter W
(j)
ij→

is either one of the scalars Ai,(i+1), B(i+1),i,Φi, or the Weyl spinor

ψΦ,i. Otherwise, the notation is as explained below (4.43).

It would be interesting to study this subsector further and determine its symmetry

group. This group is presumably a subgroup of the SU(2|3) symmetry observed in the

N = 4 SYM case [9], and determined by the way the ZM orbifolding breaks the embedding

of SU(2|3) into the full N = 4 superconformal group PSU(2, 2|4).

In [9] the authors considered weakly coupled N = 4 U(N) SYM theory on S1 × S3

with R-symmetry chemical potentials in similar near-critical regions of the phase diagram

as studied here. It was found that the Hilbert space of gauge invariant operators truncates

to similar subsectors as identified here, namely the 1/2 BPS sector, the SU(2) subsector or

the SU(2|3) subsector, depending on which chemical potentials are turned on. Furthermore,

the analysis in [9] was generalized to small, but non-zero ’t Hooft coupling λ by utilizing

the 1-loop correction D2 to the dilatation operator (cf. the perturbative expansion (4.35)).

In the large N limit, D2 restricted to the SU(2) subsector becomes the Hamiltonian of an

SU(2) spin chain; and restricted to the SU(2|3) subsector it becomes the Hamiltonian of

an SU(2|3) spin chain. What is remarkable is that in both these cases, the spin chains are

integrable [39 – 41], and that the truncated Hilbert spaces can be identified with subsectors

of the complete dilatation operator of N = 4 U(N) SYM theory that are expected to be

closed to any order in perturbation theory.

For N = 2 quiver gauge theory, the full dilatation operator along with possible inte-

grable subsectors is not yet completely settled, so we are not able to immediately generalize

our results to small, but non-zero ’t Hooft coupling λ. However, we note that much progress

has been made in this area. In particular, anomalous dimensions of various operators, the

anomalous dimension matrix restricted to various subsectors, Bethe ansätze and integra-

bility have been investigated in [42 – 53].
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5. One-loop quantum effective action with scalar VEV’s

In this section we will extend the matrix model for N = 2 quiver gauge theory on S1 × S3

in section 3 to include non-zero VEV’s for the scalar fields. To this end we calculate the

quantum effective action at weak ’t Hooft coupling to 1 loop in a slice of the configuration

space of the background fields. To simplify the calculation we restrict to the case of

zero R-symmetry chemical potentials. The potential we compute will be valid within the

temperature range 0 ≤ TR ≪ λ−1/2. The origin of the bound TR ≪ λ−1/2 comes from

the fact that R−1 provides a cutoff on the momentum integrals that appear in the loop

diagrams that contribute to the effective action. Provided that R−1 is much larger than the

inverse Debye length, one avoids infrared divergences which would require a resummation

of the thermal mass of the fields.

The method employed for computing the effective potential will be the standard back-

ground field formalism. That is, we expand the quantum fields about classical background

fields and path integrate over the fluctuations, discarding terms of cubic or higher order

in the fluctuations. The background fields will be taken to be static and spatially ho-

mogeneous; thus, the potential obtained from the computation will be a static effective

potential. Furthermore, we carry out the computation only in a slice of the configuration

space in which the background fields are mutually “commuting” in a sense that conforms

to the quiver structure.

We now proceed with a more detailed description of the calculation. For convenience

we first rescale all the fields in the N = 2 quiver gauge theory Lagrangian density (as given

in eqs. (A.34), (A.17), (A.18) and (A.33)) with a factor of gYM as follows

φ −→ 1

gYM

φ . (5.1)

We then expand the quantum fields about classical background fields by applying the

following transformations to the Lagrangian density

Ai,(i+1) −→ Ai,(i+1) + ai,(i+1) (5.2)

B(i+1),i −→ B(i+1),i + b(i+1),i (5.3)

Φi −→ Φi + φi (5.4)

Aµi −→ Aµi + δµ0αi . (5.5)

The background fields ai,(i+1), b(i+1),i, φi and αi are assumed to solve the Euler-Lagrange

EOM’s so that they are the VEV’s of the corresponding fluctuating fields. We take the

background fields to be static and spatially homogeneous, i.e. constant on S1 × S3. This

is to preserve the SO(4) isometry of S3 as we will not examine the more exotic phases in

which the vacuum spontaneously breaks rotational invariance.

The terms of the Lagrangian density arising after the transformations (5.2)–(5.5) are

grouped by their order in the fluctuating fields. The terms of zeroth order are grouped into

a tree-level Lagrangian density. The terms linear in the fluctuating fields combine to vanish

as the background fields are solutions to the Euler-Lagrange EOM’s. We discard terms
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containing fluctuating fields to cubic or higher order.19 The quantum corrections to the

tree-level Lagrangian density thus arise from path integrations over the terms quadratic in

the fluctuations. The result will thus be valid to 1-loop order in the loop expansion.

It is technically difficult to compute the quantum corrections to the effective potential

for arbitrary background fields. We will therefore only carry out the computation assum-

ing that the background fields satisfy the constraints given below. These constraints are

analogous to requiring that the background fields commute, while at the same time they

respect the quiver structure of the theory.

First, the Polyakov loops must “commute” with the scalar VEV’s:

αi ai,(i+1) − ai,(i+1)αi+1 = 0 , αi+1 ai,(i+1) − ai,(i+1)αi = 0

αi+1 b(i+1),i − b(i+1),iαi = 0 , αi b(i+1),i − b(i+1),iαi+1 = 0 (5.6)
[
αi, φi

]
= 0 ,

[
αi, φi

]
= 0 .

Second, the scalar VEV’s must “commute” among themselves:

ai,(i+1) ai,(i+1) − a(i−1),i a(i−1),i = 0 , bi,(i−1) bi,(i−1) − b(i+1),i b(i+1),i = 0
[
φi, φi

]
= 0 , a(i−1),i b(i+1),i − bi,(i−1) ai,(i+1) = 0

ai,(i+1) bi,(i−1) − b(i+1),i a(i−1),i = 0 , ai,(i+1)φi+1 − φi ai,(i+1) = 0

ai,(i+1)φi − φi+1 ai,(i+1) = 0 , b(i+1),iφi − φi+1 b(i+1),i = 0 (5.7)

b(i+1),iφi+1 − φi b(i+1),i = 0 , ai,(i+1) b(i+1),i − bi,(i−1) a(i−1),i = 0

a(i−1),i bi,(i−1) − b(i+1),i ai,(i+1) = 0 , ai,(i+1)φi+1 − φi ai,(i+1) = 0

ai,(i+1)φi − φi+1 ai,(i+1) = 0 , b(i+1),iφi − φi+1 b(i+1),i = 0

b(i+1),i φi+1 − φi b(i+1),i = 0 .

Since the zero modes ai,(i+1), b(i+1),i, φi and αi are constant over S1 × S3, the tree-level

action is obtained from the tree-level Lagrangian density by simply multiplying the volume

of S1 × S3. After imposing the constraints (5.6)–(5.7) the tree-level action takes the form

S(0) =
2π2βR

g2
YM

M∑

i=1

Tr
(
ai,(i+1) ai,(i+1) + b(i+1),i b(i+1),i + φiφi

)
. (5.8)

We choose an Rξ gauge defined by adding the gauge fixing action

Sg.f. =
1

g2
YM

1

2ξ

M∑

i=1

∫
d4x
√
|g| Tr

[
∂µAµi + i[αi, A0i] + iξ

((
a(i−1),iA(i−1),i −Ai,(i+1)ai,(i+1)

)

+
(
ai,(i+1)Ai,(i+1) −A(i−1),i a(i−1),i

)
+
(
b(i+1),iB(i+1),i −Bi,(i−1) bi,(i−1)

)

+
(
bi,(i−1)Bi,(i−1) −B(i+1),i b(i+1),i

)
+
[
φi,Φi

]
+
[
φi,Φi

]
)]2

. (5.9)

19Note that with the redefinition of fields in (5.1), discarding terms of cubic or higher order in the

fluctuations is the analog of taking the gYM −→ 0 limit in section 3.1.
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We will furthermore choose the Feynman gauge ξ = 1 for convenience. The virtue of this

gauge fixing action is that, using (5.6)–(5.7), it cancels terms appearing in the Lagrangian

density after the transformations (5.2)–(5.5) that contain both gauge field and scalar field

fluctuations. Thus, one can do the path integrations over the gauge field fluctuations and

over the scalar field fluctuations separately.

Specification of the vacuum We will restrict to the case where all the zero modes

ai,(i+1), b(i+1),i, φi and αi are taken to be diagonal N × N matrices.20 The most general

ansatz satisfying all the constraints (5.6)–(5.7) is given by

ai,(i+1) = diag
(
eiθ

i
1 , . . . , eiθ

i
N
)
a(i−1),i (5.10)

b(i+1),i = diag
(
e−iθi

1 , . . . , e−iθi
N
)
bi,(i−1) (5.11)

φi = φi+1 (5.12)

αi = αi+1 . (5.13)

If we furthermore require the vacuum to respect the gauge invariance and quiver transla-

tional invariance of the action along with the quiver M -periodicity, the most general form is

ai,(i+1) = ωk a(i−1),i (5.14)

b(i+1),i = ω−k bi,(i−1) (5.15)

φi = φi+1 (5.16)

αi = αi+1 (5.17)

where ω = e2πi/M and k ∈ Z. This is the vacuum we will adhere to in the computations

throughout this section. We will find that the expression for the quantum effective action

is independent of the value of k in (5.14)–(5.15).

5.1 Quantum corrections from bosonic fluctuations

There are radiative corrections to the tree-level potential coming from path integrations

over the part of the action that is quadratic in the bosonic fluctuations. Below we present

in a bilinear form the part of the action that is quadratic in the bosonic fluctuations, as

it appears after being added to the gauge fixing action (5.9) and the Fadeev-Popov ghost

action, and the constraints (5.6)–(5.7) have been imposed. The path integrals will then be

Gaussian and can be evaluated easily.

First we introduce some notation. Define

Aµmn ≡




(Aµ1)mn
...

(AµM )mn


 , Amn ≡




(A1,2)mn
...

(AM,1)mn


 , (5.18)

Bmn ≡




(B1,M )mn
...

(BM,(M−1))mn


 , Φmn ≡




(Φ1)mn
...

(ΦM )mn


 (5.19)

20When the VEV’s are allowed to be off-diagonal, satisfying the constraints (5.6)–(5.7) along with the

quiver M -periodicity (i.e., a(i+M),(i+M+1) = ai,(i+1) etc.) ultimately leads to relations between N and M ,

such as N |M .
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so that, e.g.,

(AT )mn =
(
(A1,2)mn, . . . , (AM,1)mn

)
and A∗

mn =




(A1,2)nm
...

(AM,1)nm


 . (5.20)

Furthermore, we define for fixed m,n the fluctuation operators �
mn
g ,�mn

A
,�mn

B
and �

mn
Φ

as certain M × M matrices (labelled by i, j = 1, . . . ,M) whose detailed form is given

in (B.1)–(B.4). Then the part of the action that is quadratic in the bosonic fluctuations

(including the Fadeev-Popov ghosts ci, ci) can be written in the form (k = 1, 2, 3)

Sb =
1

g2
YM

N∑

m,n=1

∫
d4x
√
|g|
(1

2
(A⊥T

k )mn �
mn
g (A⊥

k )nm +
1

2
(∂kF

T )mn �
mn
g (∂kF)nm

+
1

2
(AT

0 )mn �
mn
g A0nm + (cT )mn �

mn
g c∗mn

+ (AT )mn �
mn
A A∗

mn + (BT )mn �
mn
B B∗

mn + (ΦT )mn �
mn
Φ Φ∗

mn

)
(5.21)

where, as in section 3.1, the spatial components of the gauge field have been decomposed

into a transversal (i.e., divergenceless) part (A⊥
i )k and a longitudinal part (∇Fi)

k. Thereby

all the fields have been written in terms of S3 spherical harmonics. The path integrations

over the bosonic fluctuations Ai,(i+1), B(i+1),i,Φi and Aµi can now readily be done and

yield the formal expression21

Γbos

[
αi, ai,(i+1), b(i+1),i, φi

]
=

1

2

N∑

m,n=1

Tr ln det�
mn
g +

N∑

m,n=1

Tr ln det�
mn
A

+
N∑

m,n=1

Tr ln det�
mn
B +

N∑

m,n=1

Tr ln det�
mn
Φ . (5.22)

Here the traces are taken over the Matsubara frequencies and over the S3 spherical harmon-

ics, and the determinants are taken over the i, j indices of the operators �
mn
g ,�mn

A
,�mn

B

and �
mn
Φ

. Let us define here for convenience

vi,j; n,m ≡ 2
((

(ai,(i+1))nn − ω−j (ai,(i+1))mm

)(
(ai,(i+1))nn − ωj (ai,(i+1))mm

)

+
(
(b(i+1),i)nn − ωj (b(i+1),i)mm

)(
(b(i+1),i)nn − ω−j (b(i+1),i)mm

)

+
(
(φi)nn − (φi)mm

)(
(φi)nn − (φi)mm

))
. (5.23)

Now we apply the determinant formula (B.6) to the formal expression (5.22) for Γbos. Then

we take the traces over the Matsubara frequencies and over the S3 spherical harmonics,

21We are using a rather sloppy notation here as the term involving �
mn
g is to be interpreted as the

total contribution from the path integrations over the transversal and longitudinal parts of the spatial

components of the gauge field, the time component of the gauge field and the Fadeev-Popov ghosts. The

individual contributions are explicitly written out in (5.24) below.
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labelled by the angular momentum h (see table 1). This yields the following result

Γbos =
1

2M

M∑

i,j=1

N∑

m,n=1

∞∑

k=−∞
Trh≥0 ln

[(
ωk + (αnn

i − αmm
i )

)2
+ ∆2

g + vi,j; n,m

]

+
1

2M

M∑

i,j=1

N∑

m,n=1

∞∑

k=−∞
Trh>0 ln

[(
ωk + (αnn

i − αmm
i )

)2
+ ∆2

s + vi,j; n,m

]

+

(
1

2
− 1

)
1

M

M∑

i,j=1

N∑

m,n=1

∞∑

k=−∞
Trh≥0 ln

[(
ωk + (αnn

i − αmm
i )

)2
+ ∆2

s + vi,j; n,m

]

+
3

M

M∑

i,j=1

N∑

m,n=1

∞∑

k=−∞
Trh≥0 ln

[(
ωk + (αnn

i − αmm
i )

)2
+ ∆2

s +R−2 + vi,j; n,m

]
.

(5.24)

Here the first line comes from the path integrations over the transverse part of the spatial

gauge field, and the second line from the integrations over the longitudinal part. The third

line comes from integrating over the temporal component of the gauge field and the Fadeev-

Popov ghosts, contributing with the weights 1
2 and −1, respectively. Finally, the fourth line

comes from path integrating over the conformally coupled scalar fluctuations. Note that

there is an exact cancellation between the contributions of all h > 0 spherical harmonics

in the second and third line. As we will see in section 6, the surviving contribution from

the h = 0 scalar spherical harmonic will be the dominating radiative correction in the

low-temperature regime.

After performing the summations over the Matsubara frequencies and writing out the

traces over the S3 spherical harmonics with the appropriate eigenvalues of ∇2 and their

degeneracies (cf. table 1) we find

Γbos =
1

2M

M∑

i,j=1

N∑

m,n=1

[
− β

(
vi,j; n,m

)1/2
+ 2

∞∑

l=1

1

l
e−βl(vi,j; n,m)1/2

cos
(
βl(αnn

i − αmm
i )

)

+
∞∑

h=0

2h(h+ 2)

(
β
(
(h+ 1)2R−2 + vi,j; n,m

)1/2

− 2
∞∑

l=1

1

l
e−βl((h+1)2R−2+vi,j; n,m)1/2

cos
(
βl(αnn

i − αmm
i )

)
)

+ 6
∞∑

h=0

(h+ 1)2

(
β
(
(h+ 1)2R−2 + vi,j; n,m

)1/2

− 2
∞∑

l=1

1

l
e−βl((h+1)2R−2+vi,j; n,m)1/2

cos
(
βl(αnn

i − αmm
i )

)
)]

(5.25)

where vi,j; n,m is defined in (5.23). This is the complete result for the contribution to the

quantum effective action coming from bosonic fluctuations.
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5.2 Quantum corrections from fermionic fluctuations

The fluctuating fermionic fields will also give rise to radiative corrections that can be

computed much along the lines of the bosonic corrections. It is convenient to carry out the

calculation using N = 4 SYM notation for the Weyl spinor fields. The quiver structure

of the action is taken into account by including appropriate factors Ωc in the fluctuation

operator as explained in appendix B.2.

The fermionic part of the Lagrangian density can be written in N = 4 SYM notation

(cf. (A.25)) in the following bilinear form

Lferm =
1

g2
YM

M∑

i,j=1

N∑

m,n=1

(
(λp)i;mn, (λp)i;mn

)
Dmn

ij

(
(λq)j;nm

(λq)j;nm

)
(5.26)

where the fluctuation operator Dmn
ij is given in (B.11). Taking the determinant of Dmn

ij as

explained in appendix B.2, and taking the traces over the fermionic Matsubara frequencies

ωk ≡ (2k+1)π
β and over the S3 spherical harmonics, one finds the following result

Γferm = − 4

M

M∑

i,j=1

N∑

m,n=1

∞∑

h=0

h(h+ 1)

(
β

((
h+

1

2

)2

R−2 + vi,j; n,m

)1/2

+ 2
∞∑

l=1

(−1)l+1

l
e
−βl

“
(h+ 1

2)
2
R−2 + vi,j; n,m

”1/2

cos
(
βl(αnn

i − αmm
i )

)
)

(5.27)

where vi,j; n,m is defined in (5.23). The factor 4 comes from performing 4 path integrations.

This is the complete result for the contribution to the quantum effective action coming from

fermionic fluctuations.

We conclude that the quantum effective action of N = 2 quiver gauge theory with

constant scalar field VEV’s satisfying (5.6)–(5.7) is given by

Γeff = S(0) + Γbos + Γferm (5.28)

where S(0) is the tree-level action

S(0) =
2π2βR

g2
YM

M∑

i=1

N∑

n=1

(
(ai,(i+1))nn(ai,(i+1))nn + (b(i+1),i)nn(b(i+1),i)nn + (φi)nn(φi)nn

)
.

(5.29)

and Γbos and Γferm are given in (5.25) and (5.27), respectively, with vi,j; n,m given in (5.23).

Note that the tree-level potential (5.29) is attractive, whereas the 1-loop quantum

corrections in (5.25) and (5.27) are repulsive. As we will see in section 6, the competition

between an attractive and a repulsive part of the potential will cause the equilibrium

configurations of the eigenvalues of the scalar VEV’s to be hypersurfaces.

5.3 Generalization to other ZM orbifold field theories

The computations in this section and in appendix B can immediately be generalized to field

theories obtained as ZM projections of N = 4 U(NM) SYM theory where the action of ZM
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is that in (A.1) with ω replaced by ωp for p ∈ Z. For these theories,22 the quantum fields

must satisfy the ZM invariance conditions obtained from (A.14) and (A.30) by replacing

ω → ωp. In turn, the fields will take ZM projection invariant forms analogous to (A.15)–

(A.16) and (A.31)–(A.32), except that the bifundamental fields will have non-zero entries

on the p’th super- or sub-diagonal. That is, A and B will have the non-zero entries Ai,(i+p)

and B(i+p),i, respectively, and analogously for the respective superpartners χA and χB.

As a result, the fluctuation operators �
mn
g ,�mn

A
,�mn

B
and �

mn
Φ

in (B.1)–(B.4) and ∆ij

in (B.18) will have non-zero entries on the p’th super- and sub-diagonals. Therefore, using

the generalized determinant formula23 (where ω ≡ e2πi/M )

det




z1 z2 z3 · · · zM
zM z1 z2 · · · zM−1

zM−1 zM z1 · · · zM−2
...

...
...

. . .
...

z2 z3 z4 · · · z1




=
M∏

j=1

(
z1 + ωjz2 + ω2jz3 + · · · + ω(M−1)jzM

)
(5.30)

we see that the fluctuation determinants factorize as in (B.6), with ωpj replacing ωj . We

conclude that the quantum effective action of these more general ZM orbifold field theories

is given by the expression (5.28) where S(0) is given in (5.29) and Γbos and Γferm are given

in (5.25) and (5.27), respectively. The only change is that vi,j; n,m now takes the form

vi,j; n,m ≡ 2
((

(ai,(i+p))nn − ω−pj (ai,(i+p))mm

)(
(ai,(i+p))nn − ωpj (ai,(i+p))mm

)

+
(
(b(i+p),i)nn − ωpj (b(i+p),i)mm

)(
(b(i+p),i)nn − ω−pj (b(i+p),i)mm

)

+
(
(φi)nn − (φi)mm

)(
(φi)nn − (φi)mm

))
. (5.31)

6. Topology transition and emergent spacetime

In this section we will find the solutions minimizing the effective potential computed in

section 5 (given in (5.28), (5.29), (5.25), (5.27) and (5.23)) within the temperature range

0 ≤ TR≪ λ−1/2. We stress that, since the effective action of section 5 is only valid within

a sector of constant background fields satisfying (5.6)–(5.7), the minima we find in this

section are not the absolute minima of the gauge theory, and the phase transitions within

this sector of background fields do not necessarily extend to phase transitions in the full

gauge theory (cf. [14]). Nonetheless, we will see that the matrix model of section 5 exhibits

some interesting dynamics.

The resulting distributions of eigenvalues will preserve the SU(2)×U(1) R-symmetry of

N = 2 quiver gauge theory. As in ref. [13] we believe that due to the preserved R-symmetry,

the minima found here are indeed the global minima of the effective action (within the

sector of constant “commuting” VEV’s). The key observation needed for obtaining the

solutions is that both in the low-temperature regime and above the Hagedorn temperature

22These theories have also been considered in, e.g., refs. [25, 54, 30, 49].
23We emphasize that the entries of the M ×M matrix in (5.30) are allowed to be complex numbers.
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TH , the eigenvalue distributions for the scalar VEV’s and the Polyakov loop can be solved

for separately. As we will see, the Hagedorn transition causes a change in the topology of

the joint eigenvalue distribution when the temperature is raised above TH .

6.1 Low-temperature eigenvalue distribution

For temperatures low compared to the inverse radius of the S3 (i.e., TR≪ 1), one can con-

sistently discard terms in the quantum effective potential that are suppressed by Boltzmann

factors,24 and so one obtains the following low-temperature limit of the effective potential

ΓTR≪1 =
2π2βR

g2
YM

M∑

i=1

N∑

n=1

(
(ai,(i+1))nn(ai,(i+1))nn + (b(i+1),i)nn(b(i+1),i)nn + (φi)nn(φi)nn

)

− β

2M

M∑

i,j=1

N∑

m,n=1

[
2
((

(ai,(i+1))nn−ω−j (ai,(i+1))mm

)(
(ai,(i+1))nn−ωj (ai,(i+1))mm

)

+
(
(b(i+1),i)nn − ωj (b(i+1),i)mm

)(
(b(i+1),i)nn − ω−j (b(i+1),i)mm

)

+
(
(φi)nn − (φi)mm

)(
(φi)nn − (φi)mm

))]1/2
. (6.1)

We observe that the eigenvalues of the Polyakov loop are not coupled to the eigenvalues

of the scalar VEV’s. Therefore, for low temperatures, the distribution of the Polyakov

loop eigenvalues will be the same as in the case with zero scalar VEV’s treated in section

4. Thus, we immediately conclude from section 4.1 that the eigenvalues eiα
nn
i of the

Polyakov loop (for i fixed) are uniformly distributed over S1 for any temperature below

the Hagedorn temperature. Note that for a uniform distribution of the angles αnn
i , the

terms multiplied by Boltzmann factors in (5.25) and (5.27) vanish exactly. Therefore we

can consistently discard these terms as long as the temperature is below TH .

In order to find the minima of (6.1) we make the observation that by making the

identifications

ai,(i+1)
∼= ω−1ai,(i+1) (6.2)

b(i+1),i
∼= ω b(i+1),i (6.3)

φi
∼= φi (6.4)

and applying them recursively to (6.1), the low-temperature effective potential reduces to

ΓTR≪1 =
2π2βR

g2
YM

M∑

i=1

N∑

n=1

(
(ai,(i+1))nn(ai,(i+1))nn + (b(i+1),i)nn(b(i+1),i)nn + (φi)nn(φi)nn

)

−β
2

M∑

i=1

N∑

m,n=1

[
2
((

(ai,(i+1))nn − (ai,(i+1))mm

)(
(ai,(i+1))nn − (ai,(i+1))mm

)

+
(
(b(i+1),i)nn − (b(i+1),i)mm

)(
(b(i+1),i)nn − (b(i+1),i)mm

)

+
(
(φi)nn − (φi)mm

)(
(φi)nn − (φi)mm

))]1/2
. (6.5)

24We will verify a posteriori that this procedure is valid for all temperatures below the Hagedorn tem-

perature.
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It is important to note that the identifications (6.2)–(6.4) correspond uniquely to the ef-

fective potential. That is, if one replaces ω by ωq in (6.2)–(6.3), the potential (6.1) will not

reduce to (6.5) for generalM . To see this, note that, since allM powers of ω appear in (6.1),

the order of ωq must beM . Thus we must have gcd(q,M) = 1 for allM which implies q = 1.

We now proceed with finding the minima of (6.5). These will be minima of (6.1)

where the identifications (6.2)–(6.4) have been made. It is convenient to introduce the

dimensionless variables

(θi)n ≡ β(αi)nn , (6.6)

(zi)n,1 ≡ β(φi)nn , (zi)n,2 ≡ β(ai,(i+1))nn , (zi)n,3 ≡ β(b(i+1),i)nn (6.7)

and

(zi)n ≡
(
(zi)n,1, (zi)n,2, (zi)n,3

)
(6.8)

so that (zi)n ∈ C
3 for fixed i and n. Furthermore we introduce a norm on C

3 defined by

‖w − z‖ ≡
(

3∑

c=1

∣∣(wc) − (zc)
∣∣2
)1/2

(6.9)

where | · | denotes the modulus. Written in this notation, (6.5) takes the form

ΓTR≪1 =
2π2R

g2
YMβ

M∑

i=1

N∑

n=1

∥∥(zi)n

∥∥2 − 1√
2

M∑

i=1

N∑

m,n=1

∥∥(zi)n − (zi)m

∥∥ . (6.10)

We will now take the continuum limit N → ∞ and describe the eigenvalues of the

Polyakov loop and the scalar VEV’s by a joint eigenvalue distribution ρi(θi, zi) proportional

to the density of eigenvalues at the point (θi, zi) (for some fixed i) and normalized as∫
dθid

3zi ρi(θi, zi) = 1. The continuum limit is obtained by applying the substitution

1

N

N∑

n=1

[
· · ·
]
−→

∫
dθi d

3zi ρi(θi, zi)
[
· · ·
]

(6.11)

in analogy with (3.17). Here it is implied that the content of the brackets
[
· · ·
]

carries an

i label. In the continuum limit, the equation of motion for zi obtained from (6.10) reads

√
2πR

λβ
zi =

∫

Di

d3z′
i ρi(z

′
i)

zi − z′
i

‖zi − z′
i‖
. (6.12)

Here ρi(·) is defined as the average ρi(zi) ≡
∫ π
−π dθi ρi(θi, zi), and Di ⊆ C

3 denotes the

support for ρi. The solution to (6.12) is given by the eigenvalue distribution

ρi(zi) =
δ(‖zi‖ − ri)

2π4r5i
(6.13)

where the radius ri is given by

ri =
λβ√
2π3R

1024

945
(6.14)
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as can be checked straightforwardly. That is, (6.12) is satisfied for any zi when the eigen-

values are distributed uniformly over an S5 with the radius (6.14). Since (6.10) was ob-

tained from the low-temperature effective potential (6.1) by making the orbifold identifi-

cations (6.2)–(6.4), we thus conclude that the minimum of (6.1) is a uniform distribution

of the eigenvalues of the scalar VEV’s over S5/ZM where the action of ZM is precisely as

in (A.1). This is consistent with [29], as one should expect in the low temperature limit

where thermal effects are small. Since we found that the eigenvalues of the Polyakov loop

are distributed uniformly over an S1 for temperatures below the Hagedorn temperature,

we conclude furthermore that the joint eigenvalue distribution of the scalar VEV’s and the

Polyakov loop is S5/ZM × S1 in this temperature range.

It is remarkable that the eigenvalues of the scalar VEV’s localize to a hypersurface

in C
3 rather than spreading out over the configuration space. The physical origin of the

localization is essentially common for the matrix model developed here and the matrix

model of [29], namely the competition between an attractive part of the quantum effective

potential, and a repulsive part where the latter is generated by the path integrations. We

interpret the eigenvalue distribution of the scalar VEV’s as the emergence of the S5/ZM

factor of the holographically dual AdS5 × S5/ZM string theory geometry. Finally we

note that the hypersurface S5/ZM has the isometry group SU(2) × U(1), resulting from

breaking the SU(4) isometry via the orbifold identifications (6.2)–(6.4). Since this is the full

R-symmetry group SU(2)R ×U(1)R of N = 2 quiver gauge theory we believe (cf. [13]) that

the minimum found here is indeed the global minimum of the effective action of section 5.

6.2 Eigenvalue distribution above the Hagedorn temperature

In the matrix model treated in sections 3 and 4 where the VEV’s of the scalar fields were

zero we observed that as the temperature is increased above TH ≈ 0.38R−1, the Polyakov

loop eigenvalue distributions open a gap. In this section we will examine how this phase

transition manifests itself in the general case with non-zero scalar VEV’s.

From the radius (6.14) one in particular finds that for low temperatures ‖zi‖ ≫ λ, so

that the tree-level term dominates over the quantum correction by a factor ∼ ‖zi‖
λ ≫ 1.

On the other hand, around the Hagedorn temperature TH one finds ‖zi‖ ∼ λ, and the

tree-level term and the quantum corrections come within the same order of magnitude. It

is therefore natural to re-express the effective potential in terms of the new variables

(ζi)n,1 ≡ λ−1(zi)n,1 , (ζi)n,2 ≡ λ−1(zi)n,2 , (ζi)n,3 ≡ λ−1(zi)n,3 . (6.15)

The computations in this section will be valid for temperatures in the range 0 ≤ TR ≪
λ−1/2. Since we can no longer neglect the terms multiplied by Boltzmann factors,

we have to consider the full quantum effective action as computed in section 5 (given

in (5.28), (5.29), (5.25), (5.27) and (5.23)). Once again, we apply the orbifold identifi-

cations (6.2)–(6.4), and express the result in terms of the variables θi, ζi. However, the

rescaling with the ’t Hooft coupling λ in (6.15) will reorganize the perturbative expansion

of the effective potential into

Γeff = Γ(0)[θi] + λΓ(1)[θi, ζi] + O(λ2) . (6.16)
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Here the 0-loop term is

Γ(0)[θi] =

M∑

i=1

N∑

m,n=1

∞∑

l=1

1

l

[
1 −

(
zB
ad(e

−βlR−1
; 1, 1) + 2zB

bi(e
−βlR−1

; 1, 1)
)

− (−1)l+1
(
zF
ad(e

−βlR−1
; 1, 1) + 2zF

bi(e
−βlR−1

; 1, 1)
)]

cos
(
l(θi)n − l(θi)m

)
(6.17)

where zB
ad, z

F
ad, z

B
bi, z

F
bi are given in eqs. (3.6), (3.7), (3.8), (3.9), respectively, and y1 = y2 = 1

in this case since we are taking µ1 = µ2 = 0 here.

The 1-loop term in (6.16) is given by

Γ(1)[θi, ζi] =
2π2RN

β

M∑

i=1

N∑

n=1

∥∥(ζi)n

∥∥2

− 1√
2

M∑

i=1

N∑

m,n=1

∥∥(ζi)n − (ζi)m

∥∥
(

1 + 2
∞∑

l=1

cos
(
l(θi)n − l(θi)m

)
)
. (6.18)

From the expansion (6.16) it is immediately obvious that to leading order in λ the θi

are unaffected by the ζi. Therefore, to leading order, the eigenvalue distributions of the

θi are the same as they were in the case with zero scalar VEV’s treated in section 4.

The eigenvalue distributions of the scalar VEV’s can therefore be found by minimizing

Γ(1)[θi, ζi]. Taking the large N limit of (6.18) according to (6.11) one finds

1

N2
Γ(1) =

2π2R

β

M∑

i=1

∫
dθi d

3ζi ρi(θi, ζi)‖ζi‖2

−
√

2π
M∑

i=1

∫
dθi d

3ζi d
3ζ′

i ρi(θi, ζi)ρi(θi, ζ
′
i) ‖ζi − ζ′

i‖ . (6.19)

Here we have used the identity 1 + 2
∑∞

l=1 cos
(
l(θi)n − l(θi)m

)
= 2πδ

(
(θi)n − (θi)m

)
which

is simply the Fourier expansion of the delta function.

Now we proceed to minimize the action (6.19). Since the eigenvalue distributions for

the Polyakov loop and the scalar VEV’s can be solved for separately, the joint eigenvalue

distribution factorizes:

ρi(θi, ζi) =
ρi(θi)δ

(
‖ζi‖ − ri(θi)

)

‖ζi‖5(1 + (dri/dθi)2)1/2Vol(S5)
. (6.20)

Inserting (6.20) into the 1-loop term (6.19) one finds

1

N2
Γ(1) =

2π2R

β

M∑

i=1

∫
dθi ρi(θi)ri(θi)

2 − 2πC
M∑

i=1

∫
dθi ρi(θi)

2ri(θi)

=
2π2R

β

M∑

i=1

∫
dθi

[
ρi(θi)

(
ri(θi) −

Cβ

2πR
ρi(θi)

)2

− C2β2

4π2R2
ρi(θi)

3

]
(6.21)
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where C = 2048
√

2
945π . The final term only contributes to the 2-loop order distribution of the

Polyakov loop eigenvalues and can therefore be ignored. Hence for a minimum we have

ri(θi) =
Cβ

2πR
ρi(θi) . (6.22)

As we know from section 4.2, when the temperature is raised above the Hagedorn tempera-

ture TH , the Polyakov loop eigenvalue distribution becomes gapped and is thus an interval

[−θ0, θ0]. The scalar VEV eigenvalues are now distributed uniformly over an S5/ZM fibered

over this interval, with the radius of the S5/ZM at any point θi in the interval being pro-

portional to the density of Polyakov loop eigenvalues at θi (for fixed TR). The S5/ZM thus

shrinks to zero radius at the endpoints ±θ0 of the interval: the topology of the joint eigen-

value distribution is an S6/ZM where the ZM is understood to act on the S5 transverse to

an S1 diameter. Thus, the Hagedorn phase transition manifests itself in the general case

of non-zero scalar VEV’s as a change in the topology of the joint eigenvalue distribution

S5/ZM × S1 −→ S6/ZM .

In order to understand how the S6/ZM eigenvalue distribution may be realized in

the dual AdS spacetime we first need to consider the S1 part of the low-temperature

distribution S1 × S5/ZM . The eigenvalues of the Wilson line wound around the thermal

circle give the positions of D2-branes25 on the T-dual of the thermal circle in thermal AdS5.

As the temperature is raised higher and higher beyond TH , the Polyakov loop eigenvalues

become localized to smaller and smaller intervals. On the AdS side one therefore finds a

localized D2-brane configuration. It was noted in [13] that a similar localization of D2-

branes on a spatial circle, at finite temperature, was investigated in [55] where it was

observed to produce a near-horizon geometry containing a non-contractible S6. Moreover,

it was predicted in [55] from supergravity that a S1 × S5 → S6 topological transition of a

Gregory-Laflamme type should take place. In the present case, where the dual spacetime

is AdS5 ×S5/ZM , we expect the appearance of an S6/ZM in the near-horizon geometry of

the localized configuration of D2-branes on the T-dual of the thermal circle.

We now address the important question regarding the stability of the saddle

points (6.13) and (6.20) against off-diagonal fluctuations. As one may read off from (5.21),

the mass of the ij entry of a fluctuating scalar field is
√
R−2 +

(
(ϕa)ii − (ϕa)jj

)2
(for nota-

tional convenience we here use ϕa which are real-valued scalar fields related to the complex

scalar fields by (A.9)–(A.10)). In the saddle point (6.13), one finds from (6.14) that

(
(ϕa)ii − (ϕa)jj

)2 ∼ λ2

R2
(6.23)

and so the ratio of masses of an off-diagonal fluctuation to a diagonal fluctuation is
moff−diag

mdiag
∼
√

1 + O(λ2). For small λ this ratio is very close to 1. A priori it thus ap-

pears possible for the fluctuating fields to have off-diagonal elements in this background,

causing the background to be unstable.

Despite this we believe that the sector of constant and ‘commuting’ VEV’s is interesting

since it may have a connection with the dominant saddle points at strong ’t Hooft coupling

25The D2-branes here are T-dual to the original D3-branes.
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(where the assumption [ϕa, ϕb] = 0 seems natural). It is also worth remarking that at zero

temperature and strong ’t Hooft coupling one finds an S5/ZM distribution of the scalar

VEV eigenvalues [29]. In a different vein, the topological phase transition S5/ZM ×S1 −→
S6/ZM provides a natural extension of the Hagedorn/deconfinement phase transition for

the Polyakov loop eigenvalues studied in section 4, and it is a tantalizing question whether

it extends to a phase transition of the full gauge theory at weak ’t Hooft coupling.

Finally it should be noted that the effective action (5.28) has other saddle points in

which off-diagonal fluctuations can have parametrically large masses. (Indeed, compare

with [11] where these saddle points were associated with the Gregory-Laflamme instability

in the gravity dual theory.) These saddle points are therefore guaranteed to be stable

backgrounds. In particular, the effective action (5.28) has interesting physics beyond the

saddle points studied in this section.

Generalization to other ZM orbifold field theories The computations in this section

immediately carry over to the more general ZM orbifold field theories considered in section

5.3. In this paragraph we remark on the theory defined by letting the action of ZM be that

of (A.1) with ω replaced by ωp for some fixed p ∈ Z. The quantum effective action of the

corresponding field theory is obtained from that of N = 2 quiver gauge theory by defining

vi,j; n,m to be as given in (5.31). The minima of this effective action are found by making

the orbifold identifications

ai,(i+1)
∼= ω−pai,(i+1) , b(i+1),i

∼= ωp b(i+1),i , φi
∼= φi . (6.24)

The resulting expression for the effective action is then precisely the same as in the case of

N = 2 quiver gauge theory treated in this section, and the conclusions carry directly over.

In particular, having made the orbifold identifications (6.24), one finds the low-temperature

joint eigenvalue distribution S5 × S1 and the high-temperature distribution S6. Alterna-

tively, the joint eigenvalue distributions are S5/ZM × S1 and S6/ZM , respectively, where

the action of ZM is precisely the orbifold action defining the ZM orbifold theory. It is im-

portant to note that the orbifold identifications (6.24) correspond uniquely to the quantum

effective action of the field theory. Indeed, assume that we make the identifications (6.24)

with some ωq replacing ωp. In order for the quantum effective action to reduce to an ex-

pression involving norms on C
3 we must require ωq to have the same order as ωp. That

is, we must have ∀M ∈ N : gcd(q,M) = gcd(p,M) which implies q = p. Identifying the

above S5/ZM distribution with the S5/ZM part of the holographically dual AdS5×S5/ZM

spacetime, this shows in particular that, within this class of ZM orbifold field theories, the

geometry of the dual AdS spacetime is mirrored in the structure of the quantum effective

action in a precise way.

7. Discussion and conclusions

In this paper we have investigated different aspects of the phase structure of N = 2 U(N)M

quiver gauge theories. We have set up a matrix model for N = 2 quiver gauge theories on

S1 × S3 with chemical potentials conjugate to the R-charges. We then found the stable
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saddle points of the model as a function of temperature and chemical potentials. More

specifically, we identified a low and a high temperature phase separated by a threshold

temperature TH(µ) which marks a Hagedorn/deconfinement phase transition. The condi-

tion of stability of the low-temperature saddle point was translated into a phase diagram

of N = 2 quiver gauge theory as a function of both temperature and chemical potentials.

We observed that in regions of small temperature and near-critical chemical potential the

Hilbert space of gauge invariant operators truncates to the SU(2) subsector, or to a larger

subsector whose symmetry group has yet to be determined. More specifically, we found

the SU(2) subsector when the chemical potential corresponding to the SU(2)R factor of

the R-symmetry group SU(2)R×U(1)R is turned on, whereas the larger subsector emerged

from turning on both chemical potentials and setting them equal.

We then developed the matrix model of N = 2 quiver gauge theory in a different

direction, allowing non-zero VEV’s for the scalar fields, but setting the R-symmetry chem-

ical potentials to zero. We did this by computing a 1-loop effective potential for constant

and “commuting” VEV’s, valid at weak ’t Hooft coupling and in the temperature range

0 ≤ TR ≪ λ−1/2. We furthermore obtained the effective potential for more general ZM

orbifold field theories by an immediate generalization. Then we found the equilibrium con-

figurations of the eigenvalues of the Polyakov loop and the scalar VEV’s. The eigenvalues

of the scalar VEV’s localize to a hypersurface in C
3 due to a repulsive part of the effective

potential of a Vandermonde type, originating from the quantum corrections. We found

that at the Hagedorn temperature the topology of the joint distribution of the eigenvalues

undergoes a phase transition S1 × S5/ZM → S6/ZM . Finally, we identified the S5/ZM

part of the low-temperature eigenvalue distribution as the emergence of the S5/ZM part

of the holographically dual geometry AdS5 ×S5/ZM . It should be noted, though, that the

latter is a dominant geometrical saddle at strong ’t Hooft coupling while the “commuting”

saddle found from the effective potential at weak ’t Hooft coupling is not an absolute mini-

mum [14, 13]. Extrapolating this identification to high temperatures, we furthermore note

that the dual spacetime interpretation of the high-temperature S6/ZM is at present not

entirely clear. We have also generalized the analysis to a class of ZM orbifold field theories,

thereby finding that the geometry of the dual AdS spacetime is similarly mirrored in the

structure of the quantum effective action in a precise way.

There are several interesting future directions to pursue. It would be interesting to

investigate other vacua of N = 2 quiver gauge theory which preserve less R-symmetry. In

particular, such vacua could prove important when the matrix model with non-zero scalar

VEV’s developed in this paper is extended to include R-symmetry chemical potentials.

One could also consider the gravity duals of the phase transitions studied in this paper.

In particular, the effective potential we computed in section 5 can be used to study the

manifestation of Gregory-Laflamme instability from the weakly coupled gauge theory point

of view [11]. This would proceed along the lines of [11] where, above a critical temperature

Tc ≫ TH , the effective potential computed for N = 4 SYM theory was observed to develop

new unstable directions along the scalar directions accompanied by new saddle points which

only preserve an SO(5) subgroup of the global SO(6) isometry group. This phenomenon

was identified as the weak coupling version of the Gregory-Laflamme localization instability
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of the small AdS5 black hole in the gravity dual of the strongly coupled gauge theory.

Furthermore, the results obtained in this paper can be applied to compute the

Polyakov-Maldacena loop [56] at weak coupling. It can also be computed at strong coupling

following [57], so this is an interesting object to compare at weak and strong coupling.

It would be very interesting to study the subsectors of the Hilbert space of gauge

invariant operators that we identified in section 4.3 in further detail, in particular to de-

termine the symmetry group of the subsector corresponding to turning on both chemical

potentials and setting them equal. A further point of particular interest would be to ex-

amine whether these subsectors are closed under the action of the full dilatation operator

in analogy with [9]. More generally, these results could prove useful to further investigate

the corresponding spin chain for the N = 2 quiver gauge theory.

Another direction to pursue would be to examine, following [26, 58], whether the Hage-

dorn temperature of N = 2 quiver gauge theory in the near-critical limit combined with

the triple scaling limit of [46] can be matched to the Hagedorn temperature of Type IIB

string theory on a pp-wave with a compact spacelike circle. This would involve computing

the spectrum of a certain subsector of the SU(2) sector of gauge invariant operators which

are dual to strings that wind about and/or have oscillators in the compact direction. This

might require finding novel Bethe ansätze since the ground states of the spin chain govern-

ing the truncated SU(2) sector appear to be inherently different from, say, ferromagnetic

ground states.
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A. Detailed description of N = 2 quiver gauge theory

This appendix is intended to give a detailed description of N = 2 quiver gauge theory,

including details which the authors have not found elsewhere in the literature.

A.1 Relation to N = 4 SYM theory

In this section we give a detailed description of how N = 2 U(N)M quiver gauge theory

can be obtained by applying a ZM projection to N = 4 U(NM) SYM theory.

Consider Type IIB string theory and introduce a stack of NM coincident D3-branes

into the 10-dimensional (initially flat) spacetime. It is well known that the low-energy effec-

tive field theory of open strings with endpoints attached to the D3-branes is 4-dimensional

N = 4 SYM theory with gauge group U(NM). The space transverse to the world volume
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of the D3-branes is R
6 ∼= C

3 which has the isometry group SO(6). Now we consider the

action of the subgroup ZM on C
3 given by

(z1, z2, z3) −→ (z1, ω
−1z2, ωz3) , ω ≡ e2πi/M . (A.1)

The group ZM is called the orbifold group. We will denote the resulting quotient of C
3 by

C
3/ZM where it is implied that the action of ZM on C

3 is always that given in eq. (A.1).

Consider now open strings living on the stack of D3-branes where the transverse space

is C
3/ZM . The low-energy effective field theory is no longer N = 4 U(NM) SYM theory.

This is because associated with the orbifold group action (A.1) on the coordinates of C
3

there is an orbifold group action on the scalar fields and their superpartners (to be defined

below), and we must require that all quantum fields of N = 4 SYM theory be invariant

under this action. The gauge theory obtained from N = 4 SYM theory by truncating the

Hilbert spaces of quantum fields to ZM -invariant fields is called N = 2 quiver gauge theory.

The R-symmetry group of N = 2 quiver gauge theory is SU(2)R × U(1)R. This is

shown explicitly in appendix A.2 where the Lagrangian density of the quiver gauge theory

is expressed in terms of SU(2)R × U(1)R invariants. The quiver gauge theory thus indeed

has N = 2 supersymmetry.

The orbifold group action (A.1) breaks the gauge group U(NM) of the N = 4 theory

into

U(N)(1) × U(N)(2) × · · · × U(N)(M) (A.2)

which is thus the gauge group of N = 2 quiver gauge theory. We can see this as a manifes-

tation of the fact that the quiver gauge theory is a low-energy effective field theory of open

strings. Indeed, each of the M copies of C
3/ZM embedded in C

3 will contain N coincident

D3-branes, and an open string can attach its endpoints to any of the stacks. Finally, to

conclude the enumeration of the symmetries of N = 2 quiver gauge theory, we note that

it is known to be a conformally invariant theory like the parent N = 4 SYM theory [25].

In order to define the action of the orbifold group ZM on the N = 4 SYM fields we

first set up some notation. First ZM is embedded into U(NM) by defining the twist matrix

γ ≡ diag(1, ω, . . . , ωM−1) and mapping ZM ∋ k 7−→ γk ∈ U(NM). (Note that the entries

ωj of γ are really N ×N matrices.)26 The action of ZM on the N = 4 SYM fields is then

φ −→ (γk)† (ρ · φ) γk (A.3)

where ρ ·φ equals a phase times the field φ. For the scalar fields the phase is determined by

their identifications with the z1, z2 and z3 directions in C
3 and comparing with (A.1). For

the gauge field the phase is 1. For the spinor fields the phase equals that of their bosonic

superpartner. Thus the condition for the N = 4 SYM fields φ to be invariant under the

action of ZM is

φ = γ† (ρ · φ) γ . (A.4)

26Note that this representation of ZM satisfies Tr γk = 0 for all k ∈ ZM \ {0}. As pointed out in ref. [54],

this is needed for consistency (the cancellation of one-loop open string tadpole diagrams).
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In the following we will obtain the Lagrangian density of N = 2 U(N)M quiver gauge

theory by rewriting the N = 4 U(NM) SYM Lagrangian density and require that all the

fields satisfy the ZM -invariance condition (A.4).

We now consider N = 4 U(NM) SYM theory on R × S3 where the radius of S3 is

denoted by R. The scalar fields will couple conformally to the curvature of the S3 through

a quadratic term in the action. In the decompactification limit R → ∞ this term will

vanish. The action of N = 4 U(NM) SYM theory on R × S3 equipped with a metric of

Euclidean signature reads

SN=4 =

∫
d4x Tr

(
1

4
FµνFµν +

1

2
(Dµφ

i)(Dµφ
i) +

1

2
R−2φiφi − 1

4
g2
[
φi, φj

][
φi, φj

]

+
i

2
ψpγµDµψp −

g

2
ψp

[
(αk

pqφ
2k−1 + iβk

pqγ5φ
2k), ψq

])
(A.5)

where Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] and Dµ = ∂µ + ig[Aµ, · ]. The traces are taken over

the gauge indices. The indices have the ranges µ, ν = 0, . . . , 3; i, j = 1, . . . , 6; p, q = 1, . . . , 4

and k = 1, . . . , 3. Here φi are six real scalar fields and ψp are four 4-component Majorana

spinors. Moreover, γµ are the 4-dimensional 4×4 gamma matrices and αk and βk are 4×4

matrices satisfying the relations

{αk, αl} = −2δkl14 , {βk, βl} = −2δkl14 , [αk, βl] = 0 . (A.6)

Explicit representations can be given as

α1 =

(
0 σ1

−σ1 0

)
, α2 =

(
0 −σ3

σ3 0

)
, α3 =

(
iσ2 0

0 iσ2

)
, (A.7)

β1 =

(
0 iσ2

iσ2 0

)
, β2 =

(
0 12

−12 0

)
, β3 =

(
−iσ2 0

0 iσ2

)
. (A.8)

The bosonic part of the quiver action To put the action of N = 4 SYM theory in

a form suitable for performing the orbifold projection we now define three complex scalar

fields

A =
1√
2
(φ1 + iφ2) , B =

1√
2
(φ3 + iφ4) , Φ =

1√
2
(φ5 + iφ6) . (A.9)

The fields φi are Hermitian (since they transform in the adjoint representation of the gauge

group U(NM)), so by Hermitian conjugation of (A.9) we find

A =
1√
2
(φ1 − iφ2) , B =

1√
2
(φ3 − iφ4) , Φ =

1√
2
(φ5 − iφ6) . (A.10)

The scalar field part of the N = 4 SYM Lagrangian density written in terms of these fields

takes the form

LN=4
scalar = Tr

(
1

2
(Dµφ

i)(Dµφ
i) +

1

2
R−2φiφi − 1

4
g2
[
φi, φj

][
φi, φj

])

= Tr
(
DµADµA+DµBDµB +DµΦDµΦ

)

+R−2 Tr
(
AA+BB + ΦΦ

)
+ LN=4

D + LN=4
F (A.11)

– 41 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
7

where the D and F terms are, respectively,

LN=4
D =

1

2
g2 Tr

(
[A,A] + [B,B] + [Φ,Φ]

)2
(A.12)

LN=4
F = −2g2 Tr

(
[A,B][A,B] + [A,Φ][A,Φ] + [B,Φ][B,Φ]

)
. (A.13)

The scalar fields Φ, A and B can be identified with the z1, z2 and z3 directions of the

C
3 (because they are the Goldstone bosons associated with breaking the translational

invariance in the directions transverse to the D3-branes), so we have the orbifold group

action ρ : (Φ, A,B) 7→ (Φ, ω−1A,ωB), and the condition for these fields to be invariant

under the ZM -transformation is then

γ†Φγ = Φ , γ†Aγ = ωA , γ†Bγ = ω−1B . (A.14)

One easily checks that these conditions are satisfied by splitting the NM × NM matrix

fields of the N = 4 U(NM) SYM theory up into M ×M block matrices whose entries are

N ×N matrices:

Aµ =




Aµ1

Aµ2

. . .

AµM



, A =




0 A1,2

0 A2,3

. . .
. . .

0 A(M−1),M

AM,1 0



,

(A.15)

B =




0 B1,M

B2,1 0

B3,2
. . .
. . . 0

BM,(M−1) 0




, Φ =




Φ1

Φ2

. . .

ΦM



. (A.16)

Here Aµi, Ai,(i+1), B(i+1),i and Φi are N ×N matrices (where i = 1, . . . ,M and we identify

i ≃ i+M). Inserting the ZM -invariant forms of Aµ, A,B and Φ given in eqs. (A.15)–(A.16)

into (A.11)–(A.13) the scalar field part of the N = 2 quiver gauge theory Lagrangian

density reads

Lscalar =

M∑

i=1

{
Tr
[(
∂µAi,(i+1) + igAµiAi,(i+1) − igAi,(i+1)Aµ(i+1)

)

×
(
∂µAi,(i+1) + igAµ(i+1)Ai,(i+1) − igAi,(i+1)Aµi

)]

+ Tr
[(
∂µB(i+1),i + igAµ(i+1)B(i+1),i − igB(i+1),iAµi

)
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×
(
∂µB(i+1),i + igAµiB(i+1),i − igB(i+1),iAµ(i+1)

)]

+ Tr
[(
∂µΦi + ig[Aµi,Φi]

)(
∂µΦi + ig[Aµi,Φi]

)]

+R−2 Tr
(
Ai,(i+1)Ai,(i+1) +B(i+1),iB(i+1),i + ΦiΦi

)

+
1

2
g2 Tr

[(
Ai,(i+1)Ai,(i+1) −A(i−1),iA(i−1),i

+Bi,(i−1)Bi,(i−1) −B(i+1),iB(i+1),i + [Φi,Φi]
)2]

− 2g2 Tr
[(
Ai,(i+1)B(i+1),i −Bi,(i−1)A(i−1),i

)

×
(
A(i−1),i Bi,(i−1) −B(i+1),i Ai,(i+1)

)]

− 2g2 Tr
[(
Ai,(i+1)Φi+1 − ΦiAi,(i+1)

)(
Ai,(i+1) Φi − Φi+1 Ai,(i+1)

)]

− 2g2 Tr
[(
B(i+1),iΦi−Φi+1B(i+1),i

)(
B(i+1),i Φi+1−Φi B(i+1),i

)]}
.(A.17)

Inserting the form of Aµ given in (A.15) into (A.5), the gauge field part of the N = 2

quiver gauge theory Lagrangian density reads

Lgauge =
1

4

M∑

i=1

TrF i
µνF

i
µν (A.18)

where of course F i
µν = ∂µA

i
ν − ∂νA

i
µ + ig[Ai

µ, A
i
ν ].

The fermionic part of the quiver action The fermionic part of the N = 4 SYM

Lagrangian density reads

LN=4
ferm = Tr

(
i

2
ψpγµDµψp −

g

2
ψp

[
(αk

pqφ
2k−1 + iβk

pqγ5φ
2k), ψq

])
(A.19)

where the gamma matrices are given by

γµ ≡
(

0 τµ
τµ 0

)
, γ5 ≡ γ0γ1γ2γ3 =

(
1 0

0 −1

)
(A.20)

τµ ≡ (1, iσ) , τµ ≡ (1, −iσ) (A.21)

and representations of αk and βk are given in eqs. (A.7) and (A.8), respectively. The fields

ψp, p = 1, . . . , 4 are 4-component Majorana spinors which can be decomposed in terms of

2-component Weyl spinors as follows

(ψp)
a ≡

(
(λp)α

(λp)
α̇

)
, (ψp)a ≡

(
(λp)

α

(λp)α̇

)
(A.22)

where a = 1, . . . , 4 is the spinor index on ψp. The Majorana spinors are related to their

conjugates through the Majorana condition

ψp = Cψp (A.23)
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where the Majorana conjugation matrix is C =

(
ǫαβ 0

0 ǫα̇β̇

)
with ǫ12 = −ǫ21 = −1.

Combining eqs. (A.22) and (A.20)–(A.21) one finds

1

2
ψpγµDµψp = (λp)

α(τµ)αβ̇

↔
Dµ (λp)

β̇ . (A.24)

Here the operator
↔
Dµ is defined by χp

↔
Dµχq ≡ 1

2

(
χpDµχq − (Dµχp)χq

)
.

It will be useful for exhibiting the R-symmetry of the quiver gauge theory to express

the fermionic Lagrangian density in terms of the following Weyl spinors

χA ≡ λ1 , χB ≡ λ2 , ψ ≡ λ3 , ψΦ ≡ λ4 . (A.25)

Here χA, χB, ψ, ψΦ are the respective superpartners of A,B,Aµ,Φ. Note here that the bar

used over the spinors in (A.25) is understood to mean the Hermitian conjugate whereas the

bar over the λp in (A.24) denotes the usual conjugate of Weyl spinors. Explicitly, letting

α = 1, 2 be the spinor index and letting m,n be the gauge indices,

(λ1)α,mn ≡ (χA)∗α,nm = (χA)α,mn (A.26)

and

(λ1)α̇,mn =
(
(λ1)

∗
α,mn

)T
= (λ1)

∗
α,nm = (χA)α,mn (A.27)

and analogously for χB, ψΦ and ψ. In particular, note that all the Weyl spinors χA, χB, ψΦ

and ψ have undotted indices.

Inserting the definitions (A.25) into the decomposition (A.24) we can write the kinetic

part of the fermionic N = 4 SYM Lagrangian density (A.19) in the form

LN=4,kin
ferm =

i

2
Tr
(
ψpγµDµψp

)

= iTr
(
χA τµ

↔
DµχA + χB τµ

↔
DµχB + ψ τµ

↔
Dµψ + ψΦ τµ

↔
DµψΦ

)
. (A.28)

In order to find the potential part of the fermionic N = 2 quiver gauge theory Lagrangian

density we first rewrite the analogous part of the N = 4 SYM Lagrangian density (A.19).

By inserting the explicit forms of the αk, βk matrices given in eqs. (A.7)–(A.8) into (A.19)

and then decomposing the 4-component Majorana spinors into 2-component Weyl spinors

according to (A.22) and finally making the substitutions (A.25), the N = 4 SYM theory

result may be expressed as

LN=4
ferm = iTr

(
χA τµ

↔
DµχA + χB τµ

↔
DµχB + ψ τµ

↔
Dµψ + ψΦ τµ

↔
DµψΦ

)

+
g√
2

Tr
(
χA

(
[A,ψΦ] − [B,ψ]

)
+ χB

(
[A,ψ] + [B,ψΦ]

)

−ψ
(
[A,χB] − [B,χA]

)
− ψΦ

(
[A,χA] + [B,χB]

)

+χA

(
[A,ψΦ] − [B,ψ]

)
+ χB

(
[A,ψ] + [B,ψΦ]

)

− ψ
(
[A,χB] − [B,χA]

)
− ψΦ

(
[A,χA] + [B,χB]

)
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+ χA [Φ, χB] − χB [Φ, χA] + ψ [Φ, ψΦ] − ψΦ [Φ, ψ]

+ χA [Φ, χB] − χB [Φ, χA] + ψ [Φ, ψΦ] − ψΦ [Φ, ψ]
)
. (A.29)

The Weyl spinor fields χA, χB, ψΦ, ψ are the respective superpartners of A,B,Φ, Aµ. There-

fore they must satisfy the ZM -invariance conditions

γ†χAγ = ωχA , γ†χBγ = ω−1χB , γ†ψΦγ = ψΦ , γ†ψγ = ψ . (A.30)

One easily checks that these conditions are satisfied by splitting the NM × NM matrix

fields of the N = 4 U(NM) SYM theory up into M ×M block matrices whose entries are

N ×N matrices:

ψ =




ψ1

ψ2

. . .

ψM



, χA =




0 χA,1

0 χA,2

. . .
. . .

0 χA,M−1

χA,M 0



,

(A.31)

χB =




0 χB,M

χB,1 0

χB,2
. . .
. . . 0

χB,M−1 0




, ψΦ =




ψΦ,1

ψΦ,2

. . .

ψΦ,M



. (A.32)

Here ψi, χA,i, χB,i and ψΦ,i are N × N matrices (where i = 1, . . . ,M and we identify

i ≃ i + M). Inserting the ZM -invariant forms of ψ, χA, χB and ψΦ given in eqs. (A.31)–

(A.32) into (A.29), the spinor field part of the N = 2 quiver gauge theory Lagrangian

density reads (summation over i = 1, . . . ,M implied)

Lferm = iTr
(
χA,i τµ

↔
DµχA,i + χB,i τµ

↔
DµχB,i + ψi τµ

↔
Dµψi + ψΦ,i τµ

↔
DµψΦ,i

)

+
g√
2

Tr
(
χA,iAi,(i+1)ψΦ,(i+1) − χA,iψΦ,iAi,(i+1) − χA,iB(i+1),iψi+1 + χA,iψiB(i+1),i

+ χB,iAi,(i+1)ψi − χB,iψi+1Ai,(i+1) + χB,iB(i+1),iψΦ,i − χB,iψΦ,(i+1)B(i+1),i

−ψi+1Ai,(i+1)χB,i + ψiχB,iAi,(i+1) + ψiB(i+1),iχA,i − ψi+1χA,iB(i+1),i

− ψΦ,iAi,(i+1)χA,i + ψΦ,(i+1)χA,iAi,(i+1) − ψΦ,(i+1)B(i+1),iχB,i + ψΦ,iχB,iB(i+1),i

+ χA,iAi,(i+1)ψΦ,i − χA,iψΦ,(i+1)Ai,(i+1) − χA,iB(i+1),iψi + χA,iψi+1B(i+1),i

+ χB,iAi,(i+1)ψi+1 − χB,iψiAi,(i+1) + χB,iB(i+1),iψΦ,(i+1) − χB,iψΦ,iB(i+1),i

−ψiAi,(i+1)χB,i + ψi+1χB,iAi,(i+1) + ψi+1B(i+1),iχA,i − ψiχA,iB(i+1),i

− ψΦ,(i+1)Ai,(i+1)χA,i + ψΦ,iχA,iAi,(i+1) − ψΦ,iB(i+1),iχB,i + ψΦ,(i+1)χB,iB(i+1),i

+ χA,iΦiχB,i − χA,iχB,iΦi+1 − χB,iΦi+1χA,i + χB,iχA,iΦi

+ χA,iΦi+1χB,i − χA,iχB,iΦi − χB,iΦiχA,i + χB,iχA,iΦi+1

+ ψi

[
Φi, ψΦ,i

]
− ψΦ,i

[
Φi, ψi

]
+ ψi

[
Φi, ψΦ,i

]
− ψΦ,i

[
Φi, ψi

])
. (A.33)
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We conclude that the Lagrangian density of N = 2 U(N)M quiver gauge theory is

L = Lscalar + Lgauge + Lferm (A.34)

where Lscalar,Lgauge and Lferm are given in eqs. (A.17), (A.18) and (A.33), respectively.

A.2 R-symmetry

The Lagrangian density of N = 2 quiver gauge theory (given in eqs. (A.34), (A.17), (A.18)

and (A.33)) is invariant under global SU(2)R × U(1)R transformations. The U(1)R factor

of the R-symmetry group acts on the fields as

Ai,(i+1) −→ Ai,(i+1) , B(i+1),i −→ B(i+1),i , Φi −→ eiζΦi (A.35)

χA,i −→ e−iζ/2χA,i , χB,i −→ e−iζ/2χB,i (A.36)

ψi −→ eiζ/2ψi , ψΦ,i −→ e−iζ/2ψΦ,i . (A.37)

The U(1)R transformations of the Hermitian conjugate fields are obtained by flipping ζ →
−ζ. The Lagrangian density is manifestly invariant under the U(1)R transformation.

We now move to consider the SU(2)R transformations. Define the 2-component spinors

(λi)a ≡
(
Ai,(i+1)

B(i+1),i

)
, (λi)

a ≡
(
Ai,(i+1)

B(i+1),i

)
. (A.38)

Under σ ∈ SU(2)R these spinors have the transformations

(λi)a −→ σ b
a (λi)b (A.39)

(λi)
a −→ (λi)

b σ a
b . (A.40)

Note that (λi)a = ǫab(λi)
b has the transformation

(λi)a −→ ǫab σ
b

c ǫdc (λi)d = σ d
a (λi)d (A.41)

where the equality follows by using σ ∈ SU(2)R. Thus, (λi)a and (λi)a are SU(2)R doublets.

To exhibit the SU(2)R invariance of the Lagrangian density we define SU(2)R invariants

such as

(λi)a (λi)
a = −ǫab(λi)a(λi)b = −Ai,(i+1)Ai,(i+1) −B(i+1),iB(i+1),i (A.42)

and write the Lagrangian density in terms of these. For N = 2 quiver gauge theory the bi-

fundamental scalars and the adjoint fermions are organized into SU(2)R doublets as follows

(λi)a ≡
(
Ai,(i+1)

B(i+1),i

)
, (λi)a ≡

(
−B(i+1),i

Ai,(i+1)

)
(A.43)

(χi)a ≡
(

ψi

ψΦ,i

)
, (χi)a ≡

(
−ψΦ,i

ψi

)
. (A.44)
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The scalar field Lagrangian density written in terms of the SU(2)R doublets takes the

following form27

Lscalar =
M∑

i=1

[
Tr
(
ǫab(Dµλi)a(Dµλi)b +DµΦiDµΦi

)

+
1

2
g2 Tr

(
ǫab(λi)a(λi)b − ǫab(λi−1)a(λi−1)b + [Φi,Φi]

)2

− 2g2 Tr
(
ǫab(λi)a(λi)b − ǫab(λi−1)a(λi−1)b

)2

− 2g2 Tr
(
ǫab(λi)a(λi)bǫ

cd(λi−1)c(λi−1)d + ǫab(λi−1)a(λi)bǫ
cd(λi)c(λi−1)d

)

+ 2g2 Tr
(
ǫab(λi)a(λi)bǫ

cd(λi)c(λi)d + ǫab(λi)a(λi)bǫ
cd(λi)c(λi)d

)

− 2g2 Tr
(
ǫab(λi)aΦi+1(λi)bΦi + ǫab(λi)aΦi+1(λi)bΦi

)

+ 2g2 Tr
(
ǫab(λi)aΦi+1Φi+1(λi)b + ǫab(λi)a(λi)bΦiΦi

)]
. (A.45)

The spinor field Lagrangian density written in terms of the SU(2)R doublets takes the

following form

Lferm =

M∑

i=1

[
iTr

(
χA,i τµ

↔
DµχA,i + χB,i τµ

↔
DµχB,i + ǫcd(χi)c(τµ

↔
Dµχi)d

)

+
g√
2

Tr
(
ǫcd
{
χA,i(λi)c, (χi)d

}
+ ǫcd

{
χA,i, (χi+1)c(λi)d

}

+ ǫcd
{
χA,i (λi)c, (χi+1)d

}
+ ǫcd

{
χA,i, (χi)c(λi)d

}

+ ǫcd
{
χB,i(λi)c, (χi+1)d

}
+ ǫcd

{
χB,i, (χi)c(λi)d

}

− ǫcd
{
χB,i (λi)c, (χi)d

}
− ǫcd

{
χB,i, (χi+1)c(λi)d

}

+ ǫcd
{
(χi)cΦi, (χi)d

}
+ ǫcd

{
(χi)c Φi, (χi)d

}

+
{
χA,iΦi+1, χB,i

}
+
{
χA,i Φi, χB,i

}

−
{
χB,iΦi, χA,i

}
−
{
χB,i Φi+1, χA,i

})]
. (A.46)

These results are conveniently summarized in table 2 which lists the R-charges of all the

fields in N = 2 quiver gauge theory.

Here the generators of su(2)R are taken in the fundamental representation and cho-

sen as 1
2(σx, σy, σz). The R-charges of the corresponding Hermitian conjugate fields are

obtained by simply changing the signs of the U(1)R and SU(2)R charges.

B. Bosonic and fermionic fluctuation determinants

In this appendix we present some technical details of the computation of the 1-loop quantum

effective action given in section 5. More specifically, we explain here how to evaluate the

fluctuation determinants arising from path integrating over the fluctuating fields.

27Note that the term R−2 Tr
`

ǫab(λi)a(λi)b + ΦiΦi

´

describing the conformal coupling of the scalar fields

to the curvature has been omitted here.
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Ai,(i+1) B(i+1),i Φi Aµi χA,i χB,i ψΦ,i ψi

U(1)R 0 0 1 0 −1
2 −1

2 −1
2

1
2

SU(2)R
1
2

1
2 0 0 0 0 −1

2 −1
2

Table 2: R-charges for the bosonic and fermionic fields

B.1 Bosonic case

The fluctuation operators �
mn
g ,�mn

A
,�mn

B
and �

mn
Φ

in eqs. (5.21)–(5.22) are given as below.

(�mn
g )ij =





−2
(
(a(i−1),i)nn (a(i−1),i)mm + (bi,(i−1))nn (bi,(i−1))mm

)
for j = i− 1

−∂2 − 2i(αn
i − αm

i )∂0 + (αn
i − αm

i )2

+2
(
(ai,(i+1))nn (ai,(i+1))nn + (a(i−1),i)mm (a(i−1),i)mm

+(bi,(i−1))nn (bi,(i−1))nn + (b(i+1),i)mm (b(i+1),i)mm

+
(
(φi)nn − (φi)mm

) (
(φi)nn − (φi)mm

))
for j = i

−2
(
(ai,(i+1))nn (ai,(i+1))mm + (b(i+1),i)nn (b(i+1),i)mm

)
for j = i+ 1

(B.1)

and

(�mn
A

)ij =





−2
(
(ai,(i+1))nn (a(i−1),i)mm + (b(i+1),i)nn (bi,(i−1))mm

)
for j = i− 1

−∂2 − 2i(αn
i+1 − αm

i )∂0 + (αn
i+1 − αm

i )2 +R−2

+ 2
(
(ai,(i+1))nn (ai,(i+1))nn + (ai,(i+1))mm (ai,(i+1))mm

+(b(i+1),i)nn (b(i+1),i)nn + (b(i+1),i)mm (b(i+1),i)mm

+
(
(φi+1)nn − (φi)mm

) (
(φi+1)nn − (φi)mm

))
for j = i

−2
(
(a(i+1),(i+2))nn (ai,(i+1))mm + (b(i+2),(i+1))nn (b(i+1),i)mm

)
for j = i+ 1

(B.2)

and

(�mn
B

)ij =





−2
(
(a(i−1),i)nn (ai,(i+1))mm + (bi,(i−1))nn (b(i+1),i)mm

)
for j = i− 1

−∂2 − 2i(αn
i − αm

i+1)∂0 + (αn
i − αm

i+1)
2 +R−2

+ 2
(
(ai,(i+1))nn (ai,(i+1))nn + (ai,(i+1))mm (ai,(i+1))mm

+(b(i+1),i)nn (b(i+1),i)nn + (b(i+1),i)mm (b(i+1),i)mm

+
(
(φi)nn − (φi+1)mm

) (
(φi)nn − (φi+1)mm

))
for j = i

−2
(
(ai,(i+1))nn (a(i+1),(i+2))mm + (b(i+1),i)nn (b(i+2),(i+1))mm

)
for j = i+ 1

(B.3)
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and

(�mn
Φ

)ij =





−2
(
(a(i−1),i)nn (a(i−1),i)mm + (bi,(i−1))nn (bi,(i−1))mm

)
for j = i− 1

−∂2 − 2i(αn
i − αm

i )∂0 + (αn
i − αm

i )2 +R−2

+ 2
(
(ai,(i+1))nn (ai,(i+1))nn + (a(i−1),i)mm (a(i−1),i)mm

+(bi,(i−1))nn (bi,(i−1))nn + (b(i+1),i)mm (b(i+1),i)mm

+
(
(φi)nn − (φi)mm

) (
(φi)nn − (φi)mm

))
for j = i

−2
(
(ai,(i+1))nn (ai,(i+1))mm + (b(i+1),i)nn (b(i+1),i)mm

)
for j = i+ 1

(B.4)

In the general vacuum (5.10)–(5.13) these operators are tridiagonal, periodically continued

matrices (assuming M ≥ 3). The determinant of this class of matrices was considered in

ref. [59] (appendix B) who found the following result, valid for M ≥ 3:

det �
mn = tr

1∏

i=M

(
(�mn)ii −(�mn)i,(i−1)(�

mn)(i−1),i

1 0

)

+ (−1)M+1 tr
1∏

i=M

(
(�mn)i,(i−1) 0

0 (�mn)(i−1),i

)
. (B.5)

The inverse order of the initial and final indices on the product symbol indicates that the

matrix with the highest index i is on the left of the product.

Fortunately, in the vacuum (5.14)–(5.17) the fluctuation determinants take a much

simpler form. Namely, using (5.14)–(5.17), the operators �
mn
g ,�mn

A
,�mn

B
,�mn

Φ
(for fixed

m,n) can be written in the particular form below, and there is a simple closed expression

for the determinant.28 That is, defining ω ≡ e2πi/M , we have the determinant formula

det




ξ −η −ω−k(M−1)η

−η ξ −ωkη

−ω−kη ξ
. . .

. . .
. . . −ωk(M−2)η

−ωk(M−1)η −ω−k(M−2)η ξ




=
M∏

i=1

(
ξ − ωiη − ω−iη

)
. (B.6)

Note in particular that the phases ωk on the left hand side cancel out. Therefore, for any

value of k ∈ Z in (5.14)–(5.15), one obtains the same result for the fluctuation determinants.

B.2 Fermionic case

In order to compute the fluctuation determinant arising from path integrating over the

28To prove the formula, note first that the powers of ωk appearing in the super- and subdiagonal mu-

tually cancel according to (B.5), so the determinant is independent of the value of k. Putting k = 0, the

formula (B.6) is a special case of eq. (A.1) in ref. [20].
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fermionic fluctuations we must first introduce some notation:

J+
k (ω) ≡




0 1

0 ωk

0
. . .

. . . ωk(M−2)

ωk(M−1) 0




, J−

k (ω) ≡




0 ωk(M−1)

1 0

ωk 0
. . .

. . .

ωk(M−2) 0




(B.7)

and

w1 ≡ a = 〈A〉 , Ω1 ≡ J+
k (ω) (B.8)

w2 ≡ b = 〈B〉 , Ω2 ≡ J−
k (ω−1) (B.9)

w3 ≡ φ = 〈Φ〉 , Ω3 ≡ 1M (B.10)

where it is implied that A,B,Φ take the ZM projection invariant forms given in (A.15)–

(A.16).

The fluctuation operator Dmn
ij in (5.26) is as given below (where c, d = 1, 2, 3)

D
mn
ij ≡

0

B

B

B

B

B

B

@

i
2
δpqτµ

`

∂µ + δµ0(α
n
i − αm

i )
´

δij

− 1√
2
αc

pq

ˆ`

(wc)nn + (wc)nn

´

−
`

(wc)mmΩc + (wc)mmΩ−1
c

´˜

ij

+ 1√
2
βc

pq

ˆ`

(wc)nn − (wc)nn

´

−
`

(wc)mmΩc − (wc)mmΩ−1
c

´˜

ij

− 1√
2
αd

pq

ˆ`

(wd)nn + (wd)nn

´

−
`

(wd)mmΩd + (wd)mmΩ−1
d

´˜

ij

− 1√
2
βd

pq

ˆ`

(wd)nn − (wd)nn

´

−
`

(wd)mmΩd − (wd)mmΩ−1
d

´˜

ij

i
2
δpqτν

`

∂ν + δν0(α
n
i − αm

i )
´

δij

1

C

C

C

C

C

C

A

(B.11)

The reason why the wc entries labelled by the gauge index m have additional factors of Ωc

compared to the entries labelled by n comes from the commutator structure of the Yukawa

coupling (see (A.29)). Namely, when taking the trace over the gauge indices, the wc entries

labelled by n correspond to the terms where a scalar field appears between two spinor fields,

whereas those labelled with m correspond to the terms where the scalar field appears to

the right of both spinor fields. After substituting the orbifold projection invariant forms

given in eqs. (A.15)–(A.16) and (A.31)–(A.32), the bifundamental scalar VEV’s will couple

different pairs of spinor fields depending on whether the VEV appears between the spinor

fields or to the right of them in the Yukawa coupling. Since the scalar VEV’s are mutually

related through the vacuum (5.14)–(5.17), this can be compensated for by appropriately

multiplying factors of Ωc.

To compute the result of the path integrations it is convenient to define (for a fixed c)

Fc ≡
(
(wc)nn + (wc)nn

)
−
(
(wc)mmΩc + (wc)mmΩ−1

c

)
(B.12)

Gc ≡
(
(wc)nn − (wc)nn

)
−
(
(wc)mmΩc − (wc)mmΩ−1

c

)
. (B.13)

Noting that
[
Fc, Fd

]
= 0 ,

[
Fc, Gd

]
= 0 ,

[
Gc, Gd

]
= 0 (B.14)
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one finds, by using the (anti)commutation relations (A.6) for αc and βd, that the result of

the path integrations over the fermionic fluctuations (λp)i, (λp)i is

det(Dmn
ij ) = det

(
− (∂µ + iδµ0(α

n
i − αm

i ))2

− 1

2

(
1

2
{αc, αd}prFcFd+[αc, βd]prFcGd−

1

2
{βc, βd}prGcGd

))
(B.15)

= det
(

(i∂µ − δµ0(α
n
i − αm

i ))2 +
1

2
(FcFd −GcGd) δcdδpr

)
(B.16)

= det ∆ij . (B.17)

Here we have defined the M ×M matrix (labelled by i, j = 1, . . . ,M)

∆ij =





−2
(
(a1,2)nn (a1,2)mm + (b2,1)nn (b2,1)mm

)
ω−(i−2)k for j = i− 1

−∂2 − 2i(αn
1 − αm

1 )∂0 + (αn
1 − αm

1 )2

+ 2
(
(a1,2)nn (a1,2)nn + (a1,2)mm (a1,2)mm

+(b2,1)nn (b2,1)nn + (b2,1)mm (b2,1)mm

+
(
(φ1)nn − (φ1)mm

) (
(φ1)nn − (φ1)mm

))
for j = i

−2
(
(a1,2)nn (a1,2)mm + (b2,1)nn (b2,1)mm

)
ω(i−1)k for j = i+ 1

(B.18)

where we have used (5.14)–(5.17) to arrive at the equality (B.17). Applying the deter-

minant formula (B.6) and using (5.14)–(5.17) again one finds, after taking the traces over

the fermionic Matsubara frequencies ωk ≡ (2k+1)π
β and over the S3 spherical harmonics,

the expression (5.27).
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